

SARS-CoV-2の進化

佐藤佳

東京大学 医科学研究所 准教授

SARS-CoV-2/COVID-19

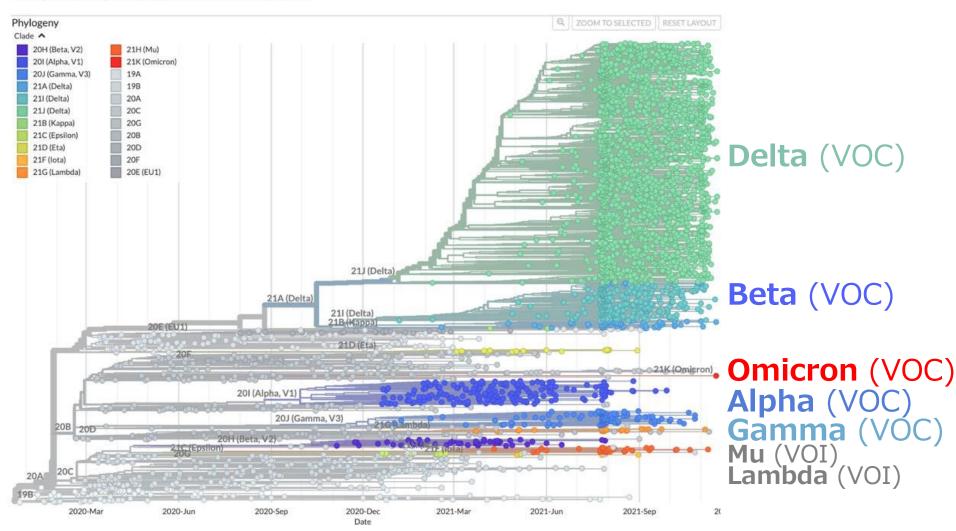
SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19

COVID-19 = coronavirus disease 2019

2022年2月現在,

4億人以上がSARS-CoV-2に感染、**550万人以上**がCOVID-19で死亡

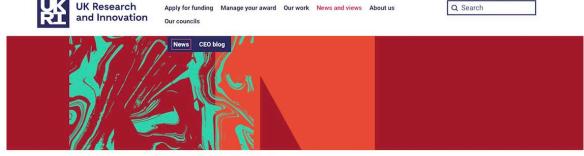
SARS-CoV-2感染症/COVID-19は、現在進行形のパンデミックである


2020年秋: 懸念すべき/注目すべき変異株(VOC/VOI) の出現

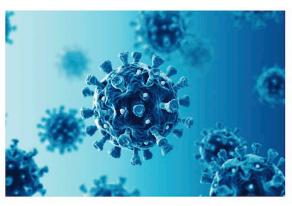
SARS-CoV-2 has been highly diversified over 2 years

Genomic epidemiology of novel coronavirus - Global subsampling

Built with nextstrain/ncov. Maintained by the Nextstrain team. Enabled by data from CISAID


Showing 3434 of 3434 genomes sampled between Dec 2019 and Nov 2021.

History of G2P-Japan: "G2P-UK…?"



G2P-UK: 250万£の支援を受ける、イギリスの国策コンソーシアム

Home > News > National consortium to study threats of new SARS-CoV-2 variants

National consortium to study threats of new SARS-CoV-2 variants

Subscribe to UKRI emails	
Sign up for news, views alerts.	and funding
Email address	
Subscribe	

15 January 2021

A new national research project to study the effects of emerging mutations in SARS-CoV-2 will be launched with £2.5 million funding from UK Research and Innovation (UKRI).

The 'G2P-UK' National Virology Consortium* will study how mutations in the virus affect key outcomes such as:

- · how transmissible it is
- . the severity of COVID-19 it causes
- · the effectiveness of vaccines and treatments.

<u>2021年1月</u>: G2P-Japan Consortiumの発足・主宰

Jumpei Ito Izumi Kimura

Keiya Uriu Akiko Oide Mai Sugnami Mika Chiba

Division of Systems Virology, IMSUT, Daichi Yamasoba Yusuke Kosugi Miyabishara Yokoyama

The Genotype to Phenotype Japan (G2P-Japan) Consortium

Kei Sato (me) **IMSUT**

Takasuke Fukuhara Hokkaido U

Terumasa Ikeda Kumamoto U

Takashi Irie Hiroshima U

Atsushi Kaneda Chiba U

Chihiro Motozono Kumamoto U

Keita Matsuno Hokkaido U

So Nakagawa Tokai U

Akatsuki Saito U Miyazaki

Kotaro Shirakawa Kyoto U

Akifumi Takaori-Kondo Kyoto U

Yutaka Suzuki U Tokyo

Kenzo Tokunaga NIID

Takamasa Ueno Kumamoto U

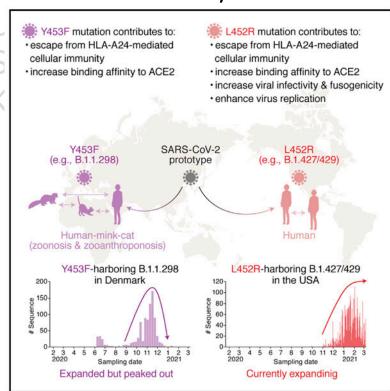
Grants supported by AMED, JSPS, JST.

2021年

Motozono et al, *Cell Host & Microbe*, 2021*
Uriu et al, *New England Journal of Medicine*, 2021*
Saito et al, *Nature*, 2021*
Kimura et al, *Cell Reports*, 2022*

Ferreura et al, *J Infect Dis*, 2021# Mlcochova et al, *Nature*, 2021#

*Corresponding author. #Collaboration with **G2P-UK** (Dr. Ravi Gupta)


____ Dr. Ravi Gupta (ケンブリッジ大学、 イギリス)

2021年

Motozono et al, *Cell Host & Microbe*, 2021*
Uriu et al, *New England Journal of Medicine*, 2021*
Saito et al, *Nature*, 2021*
Kimura et al, *Cell Reports*, 2022*

2021年

Motozono et al, *Cell Host & Microbe*, 2021*

Highlights

- L452R and Y453F mutations in the SARS-CoV-2 spike RBM have emerged
- L452R and Y453F mutants escape HLA-A24-restricted cellular immunity
- L452R increases viral infectivity and fusogenicity and promotes viral replication

Chihiro Motozono *Kumamoto U*

So Nakagawa Tokai U

Terumasa Ikeda Kumamoto U

Takamasa Ueno Kumamoto U

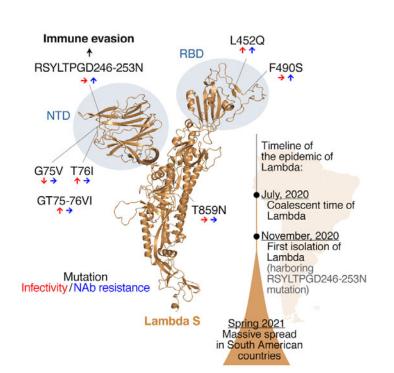
Akatsuki Saito U Miyazaki

Kei Sato (me) *IMSUT*

Takasuke Fukuhara Hokkaido U

スパイクタンパク質のL452R変異が、

- ・感染力の増強
- ・HLA-A24拘束性の細胞性免疫からの逃避に寄与することを実証。
- * その後、デルタ株が出現
- →L452R変異は、デルタ株も持つ変異。


2021年

Motozono et al, *Cell Host* Uriu et al, New England J Saito et al, *Nature*, 2021

Izumi Kimura *IMSUT*

Kimura et al, *Cell Reports*

So Nakagawa Tokai U

Kenzo Tokunaga NIID

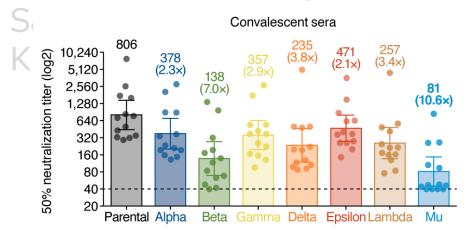
Akatsuki Saito U Miyazaki

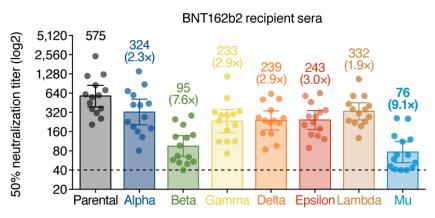
Chihiro Motozono Kumamoto U

Kotaro Shirakawa Kyoto U

Takamasa Ueno Kumamoto U

Akifumi Takaori-Kondo Kyoto U


Dr. Paul Cardinas (サンフランシスコ・デ・キト 大学、エクアドル)



2021年

Motozono et al, Cell Host & Microbe, 2021*

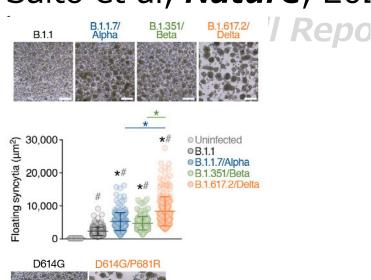
Uriu et al, **New England Journal of Medicine**, 2021*

Keiya Uriu *IMSUT*

Atsushi Kaneda Chiba U

So Nakagawa *Tokai U*

Akifumi Takaori-Kondo Kyoto U


Kotaro Shirakawa Kyoto U

ミュー株が、ワクチン接種で獲得した中和抗体 にきわめて抵抗性であることを実証

2021年

Motozono et al, *Cell Ho* Uriu et al, *New Englan*

Saito et al, *Nature*, 202

Uninfected

D614GD614G/P681R

20,000-

10,000-

Akatsuki Saito U Miyazaki

Takashi Irie *Hiroshima U*

Kotaro Shirakawa Kyoto U

Kenzo Tokunaga NIID

So Nakagawa *Tokai U*

Terumasa Ikeda Kumamoto U

Takasuke Fukuhara Hokkaido U

Kei Sato (me) IMSUT

Akifumi Takaori-Kondo Kyoto U

- 1) 細胞融合力が強い
- 2) 病原性が高い(ハムスターを用いた実験)
- 3) 上記1, 2が、スパイクタンパク質のP681R変異に起因する ことを実証。

2021年のG2P-Japanの研究活動のまとめ

The Genotype to Phenotype Japan (G2P-Japan) Consortium

Kei Sato (me) IMSUT

Takasuke Fukuhara *Hokkaido U*

Terumasa Ikeda *Kumamoto U*

Takashi Irie *Hiroshima U*

Atsushi Kaneda *Chiba U*

Chihiro Motozono *Kumamoto U*

Keita Matsuno *Hokkaido U*

So Nakagawa *Tokai U*

Akatsuki Saito *U Miyazaki*

Kotaro Shirakawa Kyoto U

Akifumi Takaori-Kondo *Kyoto U*

Yutaka Suzuki *U Tokyo*

Kenzo Tokunaga *NIID*

Takamasa Ueno *Kumamoto U*

2021年

Motozono et al, *Cell Host & Microbe*, 2021*
Uriu et al, *New England Journal of Medicine*, 2021*
Saito et al, *Nature*, 2021*
Kimura et al, *Cell Reports*, 2022*
Ferreura et al, *J Infect Dis*, 2021.#
Mlcochova et al, *Nature*, 2021.#

2021年11月: オミクロン株 (B.1.1.529, BA系統) の出現

- 2021年
- 11月25日 南アフリカ政府が、「きわめて懸念される株」として、B.1.1.529系統が出現、流行していることを公表→G2P-Japan、B.1.1.529系統の研究準備開始
- 11月26日 WHOが、 B.1.1.529系統を「懸念すべき変異株 (VOC) 」 に認定、**「オミクロン (Omicron) 株**」と命名

12月7日 国立感染症研究所より、オミクロン分離株の分与

12月25日 論文をプレプリントとして公開(VOC認定から1か月)

オミクロン株(B.1.1.529, BA系統) **の出現**

G2P-Japan オミクロン株プロジェクト 参加メンバー(11月**25日**~)

Kei Sato (me) IMSUT

Takasuke Fukuhara *Hokkaido U*

Keita Matsuno Hokkaido U

Takashi Irie *Hiroshima U*

Terumasa Ikeda Kumamoto U

"病原性班"

Terumasa Ikeda Kumamoto U

Akatsuki Saito *U Miyazaki*

Takamasa Ueno Kumamoto U

Kotaro Shirakawa Kyoto U

"中和班"

11月**26日**

「オミクロン、一緒に やらない?」

Dr. Ravi Gupta (ケンブリッジ大学、 イギリス)

オミクロン株(B.1.1.529, BA系統) **の出現**

Suzuki et al, **Nature**, in press.*

Kei Sato (me) * IMSUT

Takasuke Fukuhara* *Hokkaido U*

Keita Matsuno *
Hokkaido U

Takashi Irie *Hiroshima U*

Terumasa Ikeda Kumamoto U

"病原性班"

Meng et al, **Nature**, in press.#*

Kei Sato (me) *
IMSUT

Terumasa Ikeda Kumamoto U

Akatsuki Saito *U Miyazaki*

Takamasa Ueno Kumamoto U

Kotaro Shirakawa Kyoto U

Dr. Ravi Gupta* (ケンブリッジ大学、 イギリス)

"中和班"

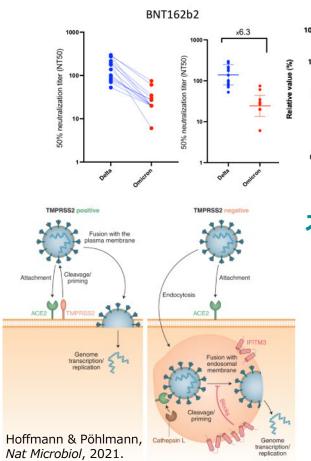
オミクロン株 (B.1.1.529, BA系統) に関する研究①

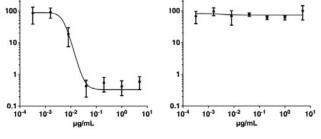
Meng et al, *Nature*, in press.#*

Kei Sato (me) * **IMSUT**

Terumasa Ikeda Kumamoto U

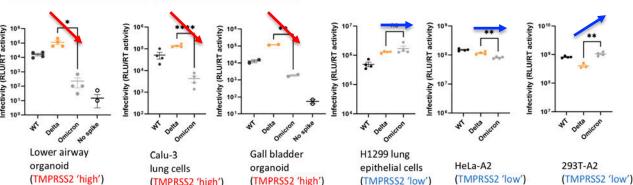
Akatsuki Saito U Miyazaki


Takamasa Ueno Kumamoto U


Kotaro Shirakawa Kyoto U

Dr. Ravi Gupta* (ケンブリッジ大学、 イギリス)

(TMPRSS2 'high')



Regeneron

オミクロン株は、

デルタ株

・ワクチンによる中和抗体が ほぼ効かない

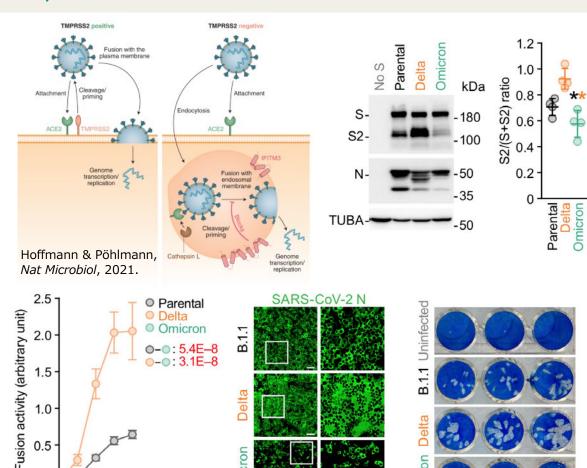
オミクロン株 (B.1.1.529, BA系統) に関する研究②

Suzuki et al, *Nature*, in press.*

Kei Sato (me) * *IMSUT*

Takasuke Fukuhara* Hokkaido U

Keita Matsuno* Hokkaido U



Takashi Irie Hiroshima U

Terumasa Ikeda Kumamoto U

"病原性班"

オミクロン株は、

0 6 12 18 24 Time after coculture (h)

0.5

・TMPRSS2 usageに関連する、<u>スパイクタンパク質</u> の開裂効率がきわめて低い

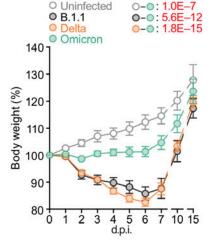
オミクロン株 (B.1.1.529, BA系統) に関する研究②

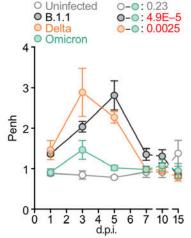
Suzuki et al, **Nature**, in press.*

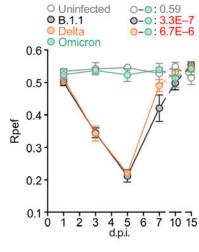
Kei Sato (me) * IMSUT

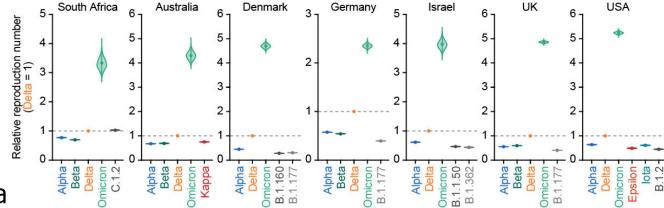
Takasuke Fukuhara* *Hokkaido U*

Keita Matsuno* *Hokkaido U*

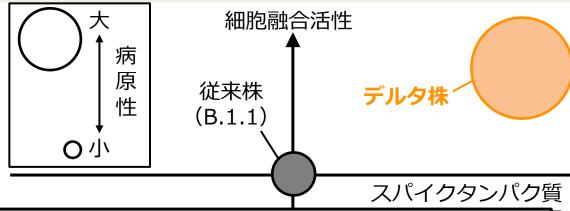



Takashi Irie Hiroshima U




Terumasa Ikeda Kumamoto U

"病原性班"


オミクロン株は、

・<u>病原性</u>が低い

デルタ株とオミクロン株の研究からわかってきたこと

感染後1,3日目の <u>肺門部の細気管支</u>の免疫染色 (茶:CoV-2 Nタンパク質)

3 d.p.i.

スパイクタンパク質の開裂効率を評価すれば、 その変異株の病原性を予測可能?

細気管支上皮細胞に感染

→ (スパイクタンパク質の 開裂効率が高いので) 細胞融合活性が高く、

どんどん肺の内部・実質 に浸潤

- →肺全体に感染
- **→<u>重症化</u>**

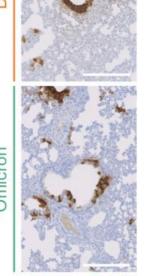
オミクロン株

細気管支上皮細胞に感染

→ (スパイクタンパク質の

開裂効率が低いので) 細胞融合活性が低く、

肺の内部・実質に


ほとんど浸潤しない

(できない)

→軽傷

*ただしそのせいで、**気管支上皮**に 留まり続けるので、呼気にウイルス が多量に含まれ続ける?

→高い伝播効率の一因?

Acknowledgments - G2P-Japan Consortium

The Genotype to Phenotype Japan 🏂 (G2P-Japan) Consortium

Kei Sato (me) *IMSUT*

Takashi Irie

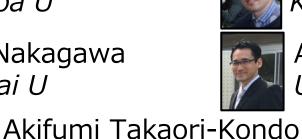
Hiroshima U

Takasuke Fukuhara Hokkaido U

Terumasa Ikeda Kumamoto U

Chihiro Motozono

Kumamoto U



Keita Matsuno Hokkaido U

Chiba U So Nakagawa Tokai U

Atsushi Kaneda

Akatsuki Saito U Miyazaki

Kotaro Shirakawa Kyoto U

Yutaka Suzuki

Kyoto U Kenzo Tokunaga NIID

Takamasa Ueno Kumamoto U

U Tokyo **2021年1月~現在**までの、**G2P-Japan**の研究成果

Motozono et al, **Cell Host & Microbe**, 2021* Uriu et al, New England Journal of Medicine, 2021* Saito et al, *Nature*, 2021* Kimura et al, *Cell Reports*, 2022* Ferreura et al, *J Infect Dis*, 2021# Mlcochova et al, *Nature*, 2021# Meng et al, **Nature** in press#* Suzuki et al, *Nature* in press*

Grants: AMED, JSPS, JST

Acknowledgments - Lab member (August 2021)

Thanks for your kind attention \odot

