Mathematics in the Real World: Some Recent Successes and Open Challenges

Emmanuel Candès

Moonshot International Symposium, Tokyo, December 18, 2019

Diagnostic medicine then...

The anatomy lesson of Dr. Nicolaes Tulp, Rembrandt, 1632

Diagnostic medicine now

Lauterbur & Mansfield (Nobel Prize in Medicine)

What an MRI machine sees

Measured data $y(k_1, k_2) \leftarrow Fourier$ transform of image $f(x_1, x_2)$

How do we form an image?

Inverse Fourier transform

$$f(x_1, x_2) \approx \sum \sum y(k_1, k_2) \mathrm{e}^{i 2\pi (k_1 x_1 + k_2 x_2)}$$

MR Imaging: body examples

abdominal blood vessels

knee

K. Pauly, G. Gold, RAD220

Done!

Fact: impact of MRI on children health is limited

Children cannot stay still or breathhold!

- (deep) anesthesia required
- respiration suspension

Need for speed in pediatric MRI

Vasanawala and Lustig

Fewer equations than unknowns!

Thou shalt need at least as many equations as unknowns!

How can we possibly solve?

Carl Friedrich Gauss (1777 - 1855)

Fourier transform

Fourier transform

highly subsampled

classical reconstruction

Fourier transform

highly subsampled

classical reconstruction

compressive sensing reconstruction

Fourier transform

highly subsampled

classical reconstruction

compressive sensing reconstruction

Fourier transform

highly subsampled

Algorithm: minimize sum of gradient magnitudes subj. to data constraints

Sparse solutions

Sparsity

 \boldsymbol{x} has at most k < n nonzero entries

Finding structured solutions

Exact solution under sparsity constraints

Exact solution under sparsity constraints

Surprise [mathematical theorem by C., Romberg and Tao]

- There is a sparse solution
- Rows of A are not sparse and diverse
- Then mi ℓ_1 solution is exact if

equations small multiple of # nonzero terms

information content

Undersampling \rightarrow no information loss!

It's a mathematical truth!

Fourier transform

compressive sensing reconstruction

highly subsampled

min ℓ_1 norm subj. to data constraints

Impact on MR pediatrics

Lustig (UCB), Pauly, Vasanawala (Stanford)

6 year old 8 fold acceleration 16 second scan 0.875 mm in-plane 1.6 slice thickness

1 year old female with liver lesions: 8X acceleration Pauly, Vasanawala (Stanford), Lustig (UCB)

Parallel imaging (PI)

Compressed sensing + PI

Lesions are barely seen with linear reconstruction

6 year old male abdomen: 8X acceleration

Zhang et al., JMRI 2014

 Parallel imaging (PI)
 Compressed sensing + PI

 Fine structures (arrows) are buried in noise and recovered by CS

6 year old male abdomen: 8X acceleration

Zhang et al., JMRI 2014

Compressed sensing + PI

Fine structures (arrows) are buried in noise and recovered by CS

Free-breathing MRI of the liver

NUFFT Standard L + S Motion-Guided L + S

12.8 fold acceleration

Free-breathing MRI of the liver

NUFFT Standard L + S Motion-Guided L + S

Temporal blurring

Free-breathing MRI of the kidneys

NUFFT Standard L + S Motion-Guided L + S

12.8 fold acceleration

Free-breathing MRI of the kidneys

NUFFT

Standard L + S

Motion-Guided L + S

One step further

Cheng et al., Stanford & UCB

3D phase-contrast cardiac MRI (4Dflow)

FDA Clears Compressed Sensing MRI Acceleration Technology From Siemens Healthineers

New technology employs iterative reconstruction to produce high-quality MR images at a rapid rate with zero diagnostic information loss

Opportunities and Challenges in the Data-driven Era

Mechanistic models

Newton

Maxwell

Schrödinger

From a long view of the history of mankind—seen from, say, ten thousand years from now-there can be little doubt that the most significant event of the 19th century will be judged as Maxwell's discovery of the laws of electrodynamics

R. Feynman

Prediction without a mechanistic model

- Galton (1886): regression of sons' heights onto parents' heights
- Fisher (1936): classification of Iris species

Today's predictive non-mechanistic algorithms

random forests, gradient boosting

neural networks

Breiman and Friedman

LeCun, Hinton and Bengio

Things we cannot surrender

- Tension between interpretability and model complexity
- People become comfortable with model complexity because of tantalizing potential

Things we cannot surrender

- Tension between interpretability and model complexity
- People become comfortable with model complexity because of tantalizing potential

- **Replicability**: Conclusions I draw today need to hold up tomorrow
- **Reliability**: Are my predictions valid? How do I communicate uncertainty?

Houston, we have a problem...

Begley and Ellis, Nature (2012)

- Amgen could only replicate 6 of 53 studies they considered landmarks in basic cancer science
- HealthCare could only replicate about 25% of 67 seminal studies
- Systematic attempts to replicate widely cited priming experiments have failed

Why Most Published Research Findings Are False

John P. A. Ioannidis

New York Times, Science, November 19, 2018

Why now? Have entered a new scientific paradigm

Nature, 2008, Vol. 455, Issue 7209

Science, 2011, Vol. 331, Issue 6018

The Economist, Feb.27th, 2010

Collect data first \implies Ask questions later

Major goal: need new statistical tools to address new problems

Selecting promising leads from black-box algorithms?

How do we make reliable decisions in the face of unknown statistical variability?

Selecting promising leads from black-box algorithms?

How do we make reliable decisions in the face of unknown statistical variability?

Only one dataset: what should we report?

Modern science faces the problem of selection of promising findings from the noisy estimates of many.

Y. Benjamini and Y. Hechtlinger

Knockoffs (Barber and Candès, 2015)

For each variable (e.g. SNP) X_j , make a knockoff version (e.g. fake SNP) \tilde{X}_j

Run scoring procedure on features and knockoffs 'serving as controls'

Black box "selects" 49 original features & 24 knockoff features \implies probably \approx 24 false positives among 49 original features

Permuted dummies do not work!

Importance of correct statistical reasoning

Knockoff dummies work!

Importance of correct statistical reasoning

Importance of mathematics

- Theory of exchangeable variables
- Theory of martingales

Analysis of platelet count

KnockoffZoom: website & code

Machine learning in sensitive applications

COMPAS Classification helps inform critical decisions and mitigate your risk. This nationally validated tool seamlessly integrates with your jail management system to provide critical inmate insights and help you manage each inmate, maximizing jail efficiency.

With Malice Towards None: Assessing Uncertainty via Equalized Coverage Yaniv Romano* Rina Foygel Barber[†] Chiara Sabatti^{*‡} Emmanuel J. Candès^{*§} August, 2019

On the use of ML to support important decisions

- How do we communicate uncertainty to decision makers?
- How do we not overstate what can be inferred from the black box?
- How do we treat everyone equitably?

Our take:

Decouple the statistical problem from the policy problem

Corbett-Davis and Goel, '19

Somewhat against current thinking in "algorithmic fairness", e.g. equalized odds Hardt, Price and Srebro, '16

Equalized coverage

Goal: construct perfectly calibrated intervals across all groups

$$\mathbb{P}\{Y_{n+1} \in C(X_{n+1}) \mid A = \bigcirc^{?}\} \ge 90\%$$

$$\mathbb{P}\{Y_{n+1} \in C(X_{n+1}) \mid A = \bigcirc^{?}\} \ge 90\%$$

Summarizes what we have learned from ML s.t.

- Rigorously quantifies uncertainty
- Treats individuals equitably

Performance

• Average across 40 random train-test (80%/20%) splits

Method		Group	Avg. Coverage	Avg. Length
Conform	nal (separate train.)	Non-white White	0.903 0.901	2.764 3.182
Conformal (joint train.)		Non-white White	0.904 0.902	2.738 3.150
CQR	(separate train.)	Non-white White	0.904 0.900	2.567 3.203
CQR	(joint train.)	Non-white White	0.902 0.901	2.527 3.102

- CQR produces shorter intervals
- Join training is more powerful

Website & code

Reliable Predictive Inference CQR: Synthetic Experiment

Overview

An important factor to guarantee a responsible use of data-driven recomment. This can be accomplished by constructing prediction intervals, which provide a This website contains a Python implementation of conformalized putchile resp also implements the equilated compare framework that build's values of group cos

Conformalized quantile regression

CQR is a technique for constructing prediction intervals that attain valid cover efficiency of quantile regression with the distribution free coverage guarantes for quantile regression, including random forests and deep neural networks. O independent of the underlying regression algorithm.

For more information, please refer to the synthetic experiment and real data :

Y. Romano, E. Patterson, and E. J. Candés, 5

predictions = icp.predict(x_test, significance-alpha)
y_lower = predictions(1,0)
y_upper = predictions(1,1)

compute the low and high conditional quantile estimation
pred = quantile_estimator.predict(s_test)

display the results

plot_func(w=x_test,y=y_test,y_u=y_upper,y_l=y_lower,pred=pred,shade_color=opr_color, method_name="CON".till="CON" formers (quantile repression", filename="linetration_split_off.prg",asv_figure=asv_figures)

P compute and display the average coverage in the range - np-use(y, test >> y_lower) & (y_test <= y_upper)) print("CQR Randow Forestar Forestars in the range (expecting " + exp(100*(1-alpha)) + "4);", in the range / lewy test) = 100

compute length of the confirmal interval per each test point length_cor_rf = y_upper = y_lower

compute and display the average length
print("CQN Random Forests: Average length:", np.mean(length cgr rf))

CQR Random Forests: Percentage in the range (expecting 90.0%): 91.06 CQR Random Forests: Average length: 1.996040925687589

The next ten years...

Replicability

The Economist Oct.19th, 2013

Judea Pearl(2009), Causality(2nd Edition), Cambridge University Press, ISBN-10: 052189560X Executive Office of the President(2014), BIG DATA: Seizing Opportunities, Preserving Values, ISBN-10: 1503016447

https://obamawhitehouse.archives.gov/sites/default/ files/docs/big_data_privacy_report_may_1_2014.pdf

Learning from data is not trivial

- Correct statistical reasoning increasingly important
- Importance of mathematics