Initiative Report:

Sustainable Resources Circulation for Global Environment

Kenji YAMAJI, Chair of WG4
Senior Vice President/Director-General,
Research Institute of Innovative Technology for the Earth (RITE)

Working Group 4

Moonshot International Symposium

December 18, 2019
@Bellesalle Tokyo Nihonbashi

WG4 in the Mission Areas for Moonshot Program

1. Leveraging the Aging Society WG5: Innovation for Solving issues Japan is facing, and leverage them to transform Japan future agriculture satisfying both food production and environmental conservation 2. Save the Earth and our Civilization WG6: Creating innovative non-

WG1: Expanding human potential for a society where everyone can pursue their dreams

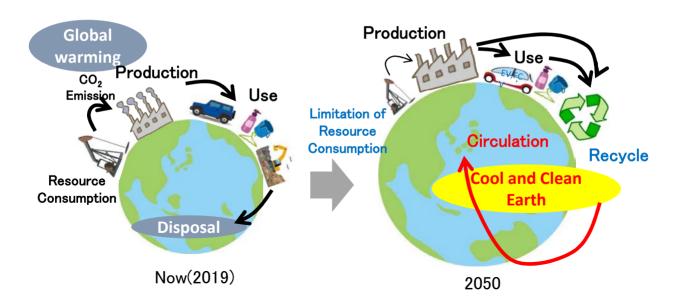
WG4: Sustainable resources circulation for global environment

Solving global agenda issues affecting the future of civilization

traditional sciences and technologies based on quantum and related phenomena

3. Exploring frontiers with science and technology

Making wildest imaginations in to Reality


WG2: Realizing a human life that "continues to improve both physically and psychologically" through complete understanding of biological functions

WG3: Expanding frontiers through co-evolution of AI and robots

Moonshot Goal Candidate:

Realization of Sustainable Resources Circulation to Recover the Global Environment by 2050

The mission of this Moonshot Goal Candidate is to develop technology for reducing the emissions of greenhouse gases and pollutants to contribute to the recovery from the ongoing issues of global warming and environmental pollution. The concept of this theme consists of pillars of , "Cool Earth" and "Clean Earth"

3

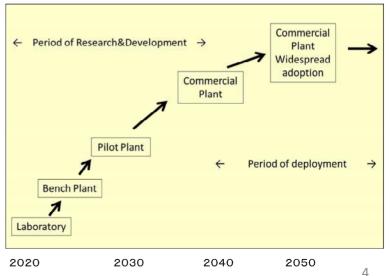
Target: Sustainable Resources Circulation for Global Environment

2030 (Output target)

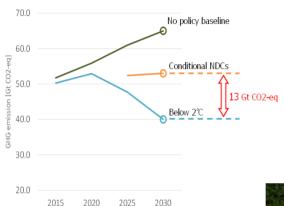
<Cool Earth>Development of circulation technology for greenhouse gases, which is effective also in terms of Life Cycle Assessment (LCA) in a pilot scale.

<Clean Earth>Development of technology in which environmental harmful substances are converted into valuable or harmless materials in a pilot scale or as a prototype.

2040 (Outcome)

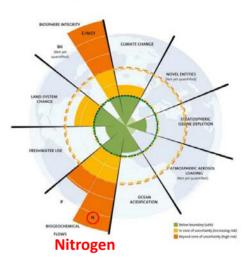

<Cool and Clean Earth>

Several small markets for the resources circulation technology will be created.

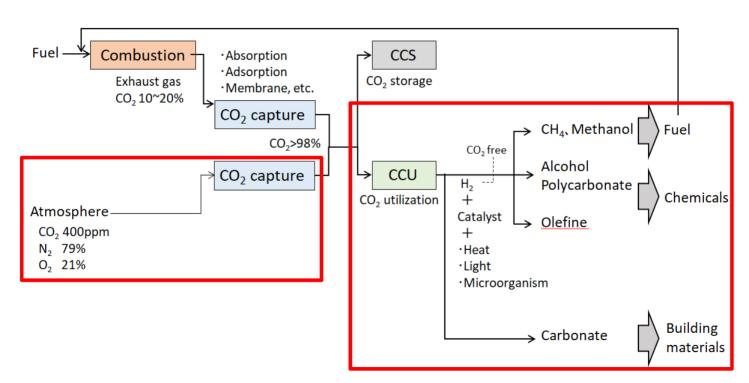

2050 (Outcome)

<Cool and Clean Earth>

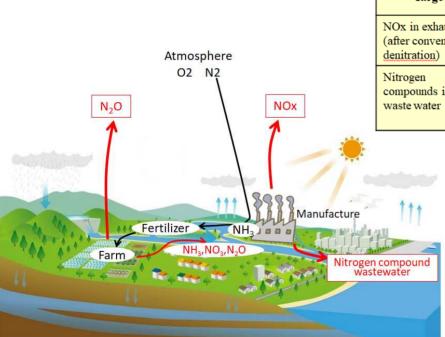
Realization of sustainable resources circulation to recover the global environment by 2050. It means commercial plants and products with circulation technology will deploy globally.


Global Threats for Cool Earth and Clean Earth

Giga-ton Gap for the Below 2°C Target

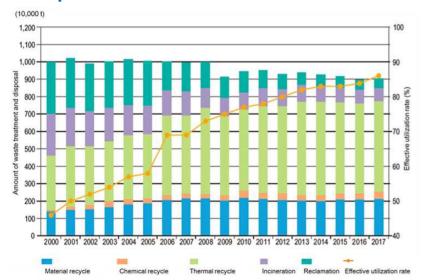


Marine Plastic Litter



Beyond Planetary Boundaries

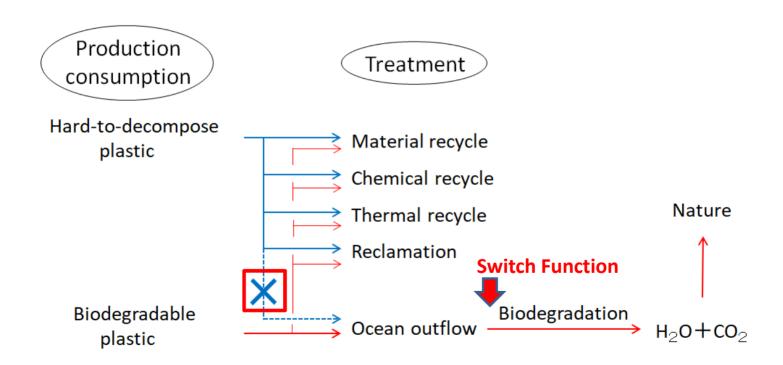
Challenge: CO₂ recovery from atmosphere (DAC), and Recovered CO₂ can be converted into fuel and/or various chemicals as a raw material (CCU)


Nitrogen: N₂O as a GHG, Over Fertilization, Acid Rain, etc.

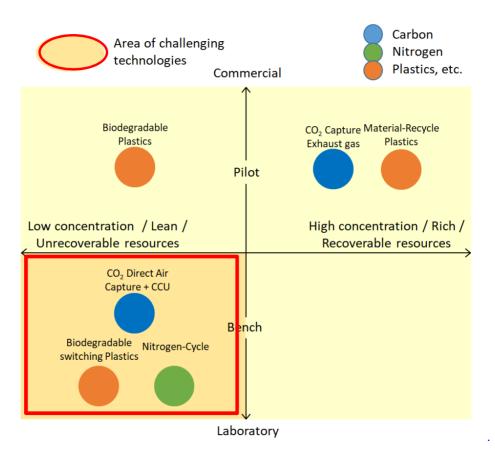
Target	Current status	Examples of technology	
NOx in exhaust gas (after conventional denitration)	Laboratory	✓ Convert NOx to ammonia by chemical reaction using a catalyst ✓ Convert NOx to nitric acid by chemical reaction	
Nitrogen compounds in waste water	Laboratory	 ✓ Convert nitrogen-containing organic to ammonia by catalytic reaction ✓ Convert nitrogen-containing organic to ammonia using microorganisms 	

Marine Plastic Litter: 700 species in the sea, including endangered species, have been damaged by plastic tangles or accidental ingestion of plastic

While recycling rate (incl. thermal recycle) is increasing in Japan, over **10 million tons of plastic flow into the sea** in the world.

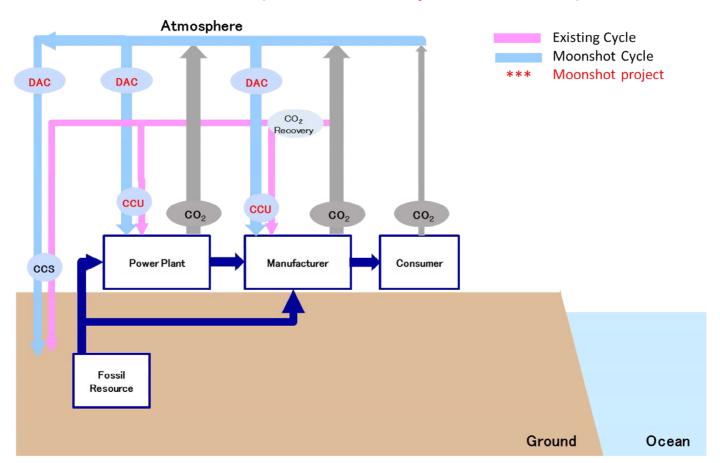

Sources of plastic pollution reaching the marine ecosystem (thousand metric tones per annum)

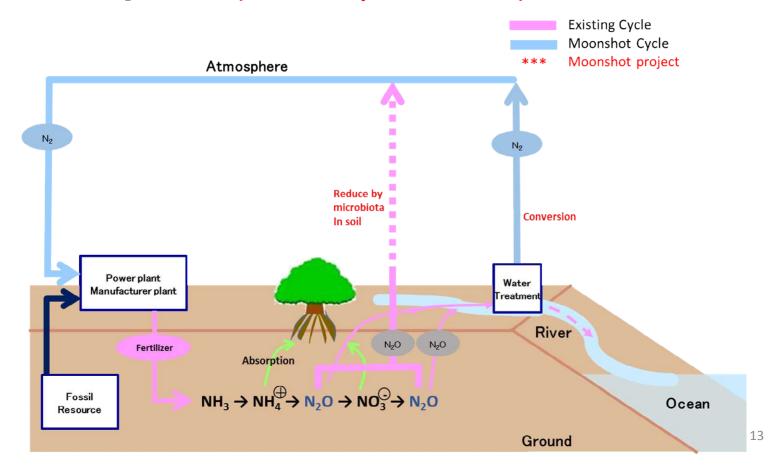
Source	Tonnage plastics estimated to be entering the ecosystem	
Rivers/land run off-land based	9,000	
Direct dumping	1,500	
Fishing gear	640	
Lost cargo	600	
Vehicle tire dust	270	
Industrial pellet spills	230	
Road and building paint	210	
Textiles	190	
Cosmetics	35	
Marine paint	16	


Treatment f waste plastic in Japan

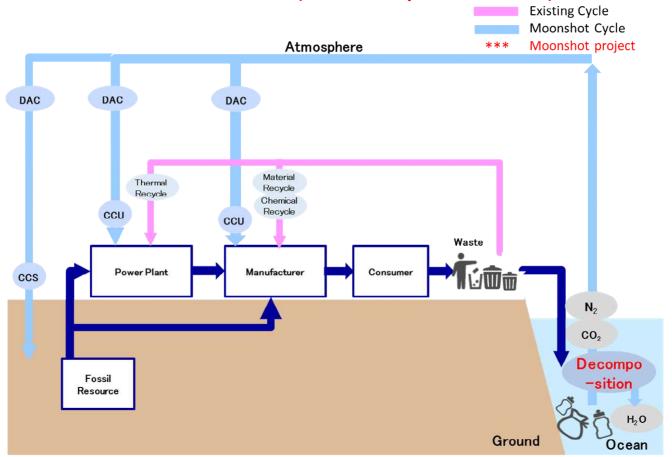
(J. R. Jambeck et al. Science pp.768-771, Feb. 2015)

Challenge: Stop ocean outflow + Switch function controlling the starting point and rate of biodegradation


Map of Science and Technology of the Resources Circulation for Cool and Clean Earth


Example of Moonshot Project in Theme of Sustainable Resources Circulation for Global Environment

	Target	Background	Moonshot program examples
	CO ₂	• Paris agreement • IPCC 2° C scenario by United Nations	① DAC related to CCU
Cool Earth	N ₂ O		2 Detoxify N ₂ O or
			suppress N ₂ O generation
	Nitrogen	· Planetary boundary	③ Convert nitrogen
Clean Earth	compounds		compounds in exhaust gas
			and wastewater to
			chemicals
	Marine plastic	•G20 Osaka blue ocean	Biodegradation plastic
	litter	announcement	including switch function
		•EU plastic regulation	


Moonshot Carbon Circulation (materials are recycled from nature)

Moonshot N₂O Circulation (materials recycled from nature)

Moonshot Waste Plastics Circulation (materials recycled from nature)

Conclusion of Initiative Report

Circulation of the resources that are released or disposed into the environment widely in space and thinly in concentration is clarified as an essential pathway for realizing of Cool Earth and Clean Earth.

As specific circulation methods, there are the following two methods. One is to capture thin and widespread resources and circulate them artificially, and the other is to detoxify or decompose them to be circulated by nature.

Program for WG4 Session

Time	Title	Speaker	note
Introduct	ory & Keynote		
9:40	Introductory	Chair Prof. Kenji YAMAJI Outline of the Initiative Report of WG4 Introduction of Program for WG4 Session	20 min.
10:00	Keynote (1)	Invited Speaker: Dr. Martin Keller	30min.
10:30	Keynote (2)	Invited Speaker: Dr. Christian Thiel	30min.
11:00	Keynote (3)	Invited Speaker: Prof. Gregory Nemet	30min.
11:30	Keynote (4)	Invited Speaker: Prof. Atsushi INABA	20 min.
11:50	Summary	Prof. Kenji YAMAJI	10 min.
12:00	Lunch		
Potential	Technology Session		
13:15	Introductory (2)	Sub-Chair Prof. Atsushi INABA	5 min.
13:20	Special presentation	Dr. Lynn J. Rothschild	20 min.
13:40	Short Presentation Presentation 10 + Q&A 5	Japanese researchers 3 Prof. Fuyuhiko, INAGAKI Dr. Soichiro, KATO Prof. Kenichi, KASUYA	15 min each
14:25	Panel discussion Roadmap/Scenario Moonshot Goal	Moderator : Sub-Chair, Atsushi INABA Panelists : Invited Speakers and Speakers in the afternoon Session	60 min.
15:25	Closing	Sub-Chair Prof. Atsushi INABA (Conclusion / Summary)	5 min.

Invited Speakers and their Themes in Keynote Session

Dr. Martin Keller, Director of NREL (National Renewable Energy Laboratory) **NREL: Transforming Energy through Innovation**

Dr. Christian Thiel, Head of Energy Efficiency and Renewables Unit, Joint Research Centre, European Commission

Science and Research for Climate/Energy Policies and a Circular Economy

Prof. Gregory Nemet, La Follette School of Public Affairs, University of Wisconsin-Madison **Accelerating Innovation in CO₂ Removal**

Prof. Atsushi INABA, School of Advanced Engineering, Kogakuin University **How to evaluate technologies?**

公益財団法人 地球環境産業技術研究機構(RITE)
Research Institute of Innovative Technology for the Earth