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CARBON
DIOXIDE
REMOVAL



GIGATONS OF CO, REMOVAL NEEDED

Climate change mitigation pathways - how to keep
temperatures below 1.5°C/ 2°C

'E‘ —
5 C
b
O businesls- - =
“ as-usua =
£ 60 \ o
2 =
'é B |,
b — d
S S g
® 30 S £
=
- A | 28
< |‘
path to 2°C - —
0 S 3
e
path to 1.5°C/ S E
J v
i 1 ' 1
2025 2050 2075 2100
Year

© mcc-berlin.net

Source: Nemet et al. / Minx et al./ Fuss et al. 2018, Environmental Research Letters



TAXONOMY OF APPROACHES
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EXPANDING RESEARCH AREA °
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INNOVATION FRAMEWORK

> Approach: code CDR articles by stage of innovation

Supply factors Demand factors

Source: Nemet et al. / Minx et al./ Fuss et al. 2018, Environmental Research Letters



LIT NOT ALIGNED WITH AN
IMMINENT SCALE-UP

.\ The scale-up
@ Negative emissions deployment challenge
.S in "likely" 2°C scenarios
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2050: POTENTIAL FOR GIGATONS AFFORDABLY
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TECH READINESS, SIDE EFFECTS,

PERMANENCE

A. Afforestation

B. Bioenergy carbon

12

& reforestation capture & storage C. Biochar D. Enhanced weathering
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 Very large removal  Capital costs
potential * Energy use
e Solvent use
* No clear side effects
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LEARNING FROM
SUCCESSFUL
TECHNOLOGIES




BOOK
PROJECT

1. How did solar
become cheap?

2. Why did it take so
long?

3. How can it be a
model
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HOW DID SOLAR GET CHEAP?
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PV AS
A MODEL FOR
LOW-CARBON
INNOVATION




WE NEED MULTIPLE MODELS °
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HOW TO SPEED
UP INNOVATION
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PV ADOPTION HAS BEEN SLOW
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ACCELERATING INNOVATION =

1st Low Widespread
commercial cost adoption
2017 2040
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ACCELERATING DIRECT AIR CAPTURE 2
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HOW TO ACCELERATE THE MODEL =

TECHNOLOGY
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Source: Nemet 2019, How Solar Energy Became Cheap: A Model for Low—Carbon Innovation. Routledge.




