Moonshot Intl. Symposium

Working Group #4 Sustainable resources circulation for global environment

Carbon recycling technologies based on microbial electrochemistry

Souichiro Kato

Bioproduction Research Institute (BPRI), Natl. Inst. of Advanced Industrial Science & Technology (AIST)

Division of Applied Bioscience, Hokkaido Univ.

Research Center for Solar Energy Chemistry, Osaka Univ.

2019 Dec. 18

Microbiology for carbon cycling

Electrochemically active microorganisms:

acquire energy by electron transfer reaction with conductive solid materials

Schubert C., Nature. 441: 277-279 (2006)

Number of articles contain the term "extracellular electron transfer"

Electrochemically active microorganisms

Electricity Consumers

Use electric current

(i.e. free electrons in conductors)

as an **energy source**

Application of electricity generators

Microbial fuel cells (MFC)

Generate electric power using any organic compounds as fuel

NEDO research project (2009-2015)

m³-scale pilot reactor
Achieved 80% reduction in power input & waste sludge

Application for wastewater treatment is almost practical
Many challenges remain for use as a power source

Application of electricity consumers

Microbial electrosynthesis

Convert CO₂ into organic compounds using electric power

Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds.

Nevin KP. et al. mBio. 1: e00103 (2010)

Sasaki K, Kato S. Curr Opin Biotechnol. 50:182-188 (2018)

Research for practical use is still limited

Symbiosis of electricity generator/consumer

Microbial interspecies electron transfer via electric currents through conductive minerals

Souichiro Kato^{a,1}, Kazuhito Hashimoto^{a,b,c,2}, and Kazuya Watanabe^{a,b,d,2} PNAS 109: 10042-10046 (2012)

Symbiotic interactions can be promoted/created by adding conductive particles

Biotechnology vs. Materials science

	Living organisms (Photosynthesis)	Inorganic materials (Artificial photosynthesis)
Production of organics	O Can produce various, complex organics	× Difficult to produce complex organic matters
Environmental compatibility	O Ambient conditions, self propagation/organisation	× Harsh conditions, use toxic/rare metals, etc.
Reaction rates	× Low	O High
Energy efficiency	× Low (~0.1%)	O High (~10%)

We can develop better systems by hybrid of the two technologies (semi-artificial photosynthesis)??

Ex. 1) Semi-artificial photosynthesis

ARTICLES https://doi.org/10.1038/s41929-017-0005-1

1:32-39 (2018)

nature

catalysis

Technical photosynthesis involving CO₂ electrolysis and fermentation

Thomas Haas¹, Ralf Krause², Rainer Weber³, Martin Demler¹ and Guenter Schmid^{2*}

Ex. 2) Semi-artificial THERMOsynthesis

Development of a novel energy conversion system by hybrid of inorganic materials and microorganisms

Souichiro Kato (AIST) and Ryuhei Nakamura (RIKEN), in the AIST-RIKEN joint research project

Production of organics only from wastewater, waste heat & waste gas (semi-artificial thermosynthesis)

Ex. 3) Photosynthetic "Cyborg" bacteria

Magnetotactic bacteria :

Uebe R, Schüler D. Nat Rev Microbiol. 14:621-637 (2016)

produce nano-particles of magnetite (Fe₃O₄) to sense the terrestrial magnetism

"Cyborg" magnetotactic bacteria doing photosynthesis??

Microbiology for carbon cycling

