
Reproducible computational 
psychiatry based on data 

assimilation of multiple-disorder 
and multi-site database

Mitsuo Kawato
Advanced Telecommunication Research Institute 

International (ATR), Brain Information 
Communication Research Group (BICR)

Moonshot International Symposium, 
18th December, 2019 @Tokyo, Japan



Unmet medical needs in psychiatry
• Diagnoses such as DSM-V are categorical, and based on 

symptoms and signs, without biological examination.
• High comorbidities are observed and clear correspondence 

between categories and medications is lacking.
• No mega-sales psychiatric drug developed in 30 years
• Majority of patients are not fully cured
• NIMH started Research Domain Criteria (RDoC) in 2010
» Clustering based on genetics and 

neuroscience, but not reproducible!!
» Tom Insel moved to Google in 2015.
» In Japan SRPBS 2008~2013, 2013~2018,

and Brain/MINDS Beyond 2018~



Research Domain Criterion (NIMH)
うつ病

気分変調症

双極うつ病

遺伝リスク

脳活動指標
(安静時脳機能結合etc.)

生理学的指標

行動指標

ライフイベント

再現性確認
バイオマーカー
に基づく治療

Traditional classes Data-driven classificationBiological data

Modified from 
Insel T et al. 2015
Science
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Clementz BA et al. Am J Psych 2016
Drysdale AT et al. Nat Med 2017

• Schizophrenia
• Schizoaffective 

disorders
• Bipolar disorders

Biotype Traditional diagnosis
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Difficulty of AI in psychiatry
• Huge site differences in MRI
• Over-training and poor generalization
• Clustering is more difficult than classification
• Until recently, neither classification or 

stratification was generalizable for perfectly 
independent cohort

• No reproducibility in science and no practical 
utility in diagnoses or interventions

• Harmonization and multi-site database essential
Yamashita A, Yahata N, Itahashi T, Lisi G, Yamada T, Ichikawa N, Takamura M, Yoshihara Y, Kunimatsu A, 
Okada N, Yamagata H, Matsuo K, Hashimoto R, Okada G, Sakai Y, Morimoto J, Narumoto J, Shimada Y, 
Kasai K, Kato N, Takahashi H, Okamoto Y, Tanaka SC, Kawato M, Yamashita O, Imamizu H: Harmonization 
of resting-state functional MRI data across multiple imaging sites via the separation of site differences into 
sampling bias and measurement bias, PLoS Biology, 17(4): e3000042. (2019)

http://www.cns.atr.jp/~kawato/Ppdf/journal.pbio.3000042.pdf
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DecNef database project
Strategic Research Program for Brain Sciences (SRPBS)
The mental and neurological disease treatment group

2,409 multi-
disorder 
participants

+
411 traveling 
subjects 
samples

https://bicr-resource.atr.jp/decnefpro/



Population representing
psychiatric disorder 1

Healthy control
population

a SRPBS multi-disorder dataset

Measurement bias
Site difference

*Same participants at each site

Measurement bias

Sampling bias
of psychiatric disorders

Site difference
Sampling bias

of healthy controls

Population representing
psychiatric disorder 2

Site1 Site3Site2
b Traveling-subject dataset

Site1 Site3Site2
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Traveling-subject harmonization

1. Measurement bias
• The difference in properties of MRI scanners 

such as imaging parameter, field strength, MRI 
manufacture, and model of MRI scanner.

• Uninteresting and disturbing

2. Sampling bias
• The difference of participants among sites

• Biologically valuable

Two types of bias in site difference

Site1

fMR
I

Site2 Site3

Site1 Site2 Site3

Participants

9 healthy subjects visited 12 scanning sites
and 411 sessions were measured
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Evaluation of measurement and sampling 
biases with 9 travelling subjects
Measurement biases were larger than disorder effects

Individual differences Measurement biases

Sampling biases Disorder effects



PCA of multi-site multi-disorder 
data before/after harmonization
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Yamashita A, Yahata N, Itahashi T, Lisi G, Yamada T, Ichikawa N, Takamura M, Yoshihara Y, Kunimatsu A, 
Okada N, Yamagata H, Matsuo K, Hashimoto R, Okada G, Sakai Y, Morimoto J, Narumoto J, Shimada Y, 
Kasai K, Kato N, Takahashi H, Okamoto Y, Tanaka SC, Kawato M, Yamashita O, Imamizu H: Harmonization 
of resting-state functional MRI data across multiple imaging sites via the separation of site differences into 
sampling bias and measurement bias, PLoS Biology, 17(4): e3000042. (2019)

http://www.cns.atr.jp/~kawato/Ppdf/journal.pbio.3000042.pdf
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Only 16 out of 9,730 FCs selected

Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y, Kuwabara H, Kuroda M, Yamada T, Megumi F, 
Imamizu H, Nanez JE, Takahashi H, Okamoto Y, Kasai K, Kato N, Sasaki Y, Watanabe T, Kawato M : A small number of 
abnormal brain connections predicts adult autism spectrum disorder, Nature Communications, 7:11254, (2016)



Figure 2 2014-05-11
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10



ASD and SSD regarded 
the same 80 years ago, 
DSM-III separated the 
two 40 years ago 

Brain network liability of schizophrenia

Brain netw
ork liability of autism

Autism

Schizophrenia

Control

ASD pathological 
connections are a 
subset of SSD 
pathological 
connections
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Yoshihara Y, Lisi G, Yahata N, Fujino J, Matsumoto Y, Miyata J, Sugihara G, Urayama S, Kubota M, 
Yamashita M, Hashimoto R, Ichikawa N, Cahn W, van Haren NEM, Mori S, Okamoto Y, Kasai K, Kato 
N, Imamizu H, Kahn RS, Sawa A, Kawato M, Murai T, Morimoto J & Takahashi H: Overlapping but 
asymmetrical relationships between schizophrenia and autism revealed by brain connectivity, bioRxiv, (2018)

Schizophrenia and autism

http://www.cns.atr.jp/~kawato/Ppdf/Overlapping_but_asymmetrical_relationships_bioRxiv.pdf


Circuit marker of melancholic depression

Ichikawa N, Lisi G, Yahata N, Okada G, Takamura M, Yamada M, Suhara T, Hashimoto R, Yamada T, 
Yoshihara Y, Takahashi H, Kasai K, Kato N, Yamawaki S, Kawato M, Morimoto J, Okamoto Y:Identifying
melancholic depression biomarker using whole-brain functional connectivity, arXiv.org, 1704.01039 (2017)

http://www.cns.atr.jp/~kawato/Ppdf/arXiv_manuscript_DepressionBMT_bmiNI20170403.pdf


DLPFC-PDMN connection was worsened 
by anti-depressants treatments!!
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SSRI or SNRI is 
not sufficient as a 
therapy for 
depression.
More specific 
treatment on 
DLPFC, such as r-
TMS, 
neurofeedback or 
DBS, is suggested 
necessary.
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Ichikawa N, Lisi G, Yahata N, Okada G, Takamura M, Hashimoto R, Yamada T, Yamada M, Suhara T, 
Moriguchi S, Mimura M, Yoshihara Y, Takahashi H, Kasai K, Kato N, Yamawaki S, Seymour B, Kawato M, 
Morimoto J & Okamoto Y: Antidepressant modulation of the primary functional brain connections associated 
with melancholic major depressive disorder, under second review (2019)

Functional connections of healthy 
participants and patients at 3 stages

http://sydney.cns.atr.jp/kawato-local/pdfs/manuscript_DepressionFCs_BME20181005.pdf


Starting from category and turning 
it into spectrum and subtyping
• Supervised machine learning with teaching 

signal provided as diagnosis by psychiatrists
• Sparseness to find a small number of functional 

connections (FCs) for classification
• Weighted linear summation of FCs define 

network liability and biological dimension 
useful for diagnosis, stratification, redefinition, 
drug evaluation, and selecting therapy target

• Precision medicine for each patient based on 
examination of many brain-network biomarkers

15



AVERAGE

ASD

ADHDARMS

Depression

Dependence

OCD

Spectral relationships of many disorders 
revealed by dimensions; brain networks

Dimension 1
Estimated biological dimension as linear sum of the functional connectivity

Biological Dimension derived by Machine Learning from Big Data

Dimension 2

serotonin-dopamine 

antagonist, SDA

Methylphenidate, MPH

SSRI

Schizophrenia Personality disorder

Personality disorder

Nature, 24 April 2013

Bipolar disorder
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neurofeedback, fMRI and "decoding OR multi-voxel OR
connectivity"
neurofeedback and "decoding OR multi-voxel OR
connectivity"

Two fMRI double-blinded placebo-controlled 
randomized control studies appeared recently
• ROI fMRI depression: Young KD et al., Am J Psych, 2017 April
• DecNef animal phobia: Vincent Dumouchel et al., PNAS 2018

Rapid increase in numbers of 
neurofeedback papers

��



Trial design of DecNef and FCNef

• Decoding or 
functional 
connectivity

• Terminal 
monetary 
reward

• 50~200 trials 
per day

• Several days
• No instruction
• Not conscious 

about induced 
information 

Induction Reward

Induction

Reward



Different information in different areas 
can be manipulated by DecNef

Amano et al., Current Biology, 2016

Koizumi et al., Nat Hum Behav, 2016

Association of color 
and orientation

Facial preference
Shibata et al., PLoS Biol, 2016

Fear memory extinction

Metacognition(confidence)
Cortese et al., Nat Commun, 2016; 
NeuroImage, 2017
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Visual perceptual learning
Shibata et al., Science, 2011

Intervention for animal phobia (double blind RCT)
Taschereau-Dumouchel et al., PNAS, 2018

Watanabe T, Sasaki Y, Shibata K, Kawato M: Advances in fMRI real-time neurofeedback,
Trends in Cognitive Sciences, 21(12), 997-1010 (2017) 



Target

Outside target

Behavior
fMRI 

signal

Neuro-
feedback

task

Target

Outside target

Target

Outside target

Neural 
activity

Targeted neural 
plasticity model
(Alternative accounts)

Neurofeedback loop

Observable in fMRI experiment

Not observable in fMRI experiment
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Targeted neural plasticity model

Shibata K, Lisi G, Cortese A, Watanabe T, Sasaki Y, Kawato M: Toward a comprehensive 
understanding of neural mechanisms of decoded neurofeedback, NeuroImage, 188, 539–
556 (2018)

(Explicit strategy)

(Breathing)

(Placebo effects)

(Experimenter’s effects)(Head motion)

http://www.cns.atr.jp/~kawato/Ppdf/1-s2.0-S1053811918321669-main.pdf


Little information leak of facial 
preference from CC to other regions

A: decoder construction, B: DecNef induction
Shibata K, Watanabe T, Kawato M, Sasaki Y: Differential activation patterns in the same brain 
region led to opposite emotional states, PLoS Biology, 14(9): e1002546 (2016)

http://www.cns.atr.jp/~kawato/Ppdf/journal.pbio.1002546.pdf


Human causal systems 
neuroscience with DecNef
• DecNef is versatile and efficient in manipulating 

different cognitive functions of various brain 
regions with good effect sizes

• DecNef is a neural operant conditioning
combined with decoding technique

• fMRI-MVP PCA and ring-attractor network 
simulation suggest that spontaneous and target 
neural activity is reinforced

• DecNef is better than optogenetics for several 
aspects including human usage, spatiotemporal 
control, derived from hundreds of brain activity 
patterns, information specified by decoding.



Year Reference Population Method
Target brain 

area/connectivity Purpose of neurofeedback training

Change in neurofeedback 
scores?

(effect size of major 
results)

Behavioral change?
(effect size of major results)

Correlation 
between neural 
and behavioral 

changes?

2011 Shibata et al. [1] Normal DecNef Early visual cortex
To test if inductions of activations in the 

early visual cortex lead to visual perceptual 
learning of an orientation

Yes
(1.06)

Perceptual learning of an 
orientation occurred (1.77)

Significant
(r = 0.87)

2015 Megumi et al. [2] Normal FCNef
Parietal and motor 

cortices
To test if FCNef is capable of inducing long-

term increase in a target connectivity
Yes

(0.69)
Behavioral measurements were 

not conducted in this study
N/A

2016 Amano et al. [3] Normal DecNef Early visual cortex
To test if the early visual cortex is capable of 

associative learning of an orientation and 
color

Yes
(2.14)

Associative learning of an 
orientation and red color 

occurred (1.07)
N/A

2016 Shibata et al. [4] Normal DecNef Cingulate cortex
To test if inductions of activations in the 
cingulate cortex increase and decrease 

preferences to faces

Yes for increase (1.17) 
and decrease (0.70) 

groups

Preferences to faces increased 
(1.38) and decreased (0.96)

Significant
(r = 0.78)

2016 Koizumi et al. [5] Normal DecNef Early visual cortex
To test if pairings of monetary reward and 

activations of the early visual cortex lead to 
counter-conditioning of fear memory

Yes
(0.53)

Skin conductance response to a 
fear-associated stimuli decreased 

(0.64)
N/A

2016 Cortese et al.b [6] Normal DecNef
Parietal and frontal 

cortices

To test if inductions of activations in the 
parietal and frontal cortices increase and 

decrease perceptual confidence

Yes for increase (1.50) 
and decrease (1.34) 

groups

Confidence in a visual task 
increased (1.15) and decreased 

(0.47)

Significant
(r = 0.68)

2017 Yamada et al. [7] Major depression FCNef
Middle frontal gyrus 

and precuneus

To test if FCNef on abnormal connectivity 
for patients with major depression 
ameliorates severity of depression 

Yes
(2.22)

Hamilton depression rating scale 
improved (1.52)

Significant
(r = 0.87)

2017 Yamashita et al. [8] Normal FCNef
Parietal and motor 

cortices

To test if changes in a target connectivity 
lead to changes in reaction times in a visual 

task 

Yes
(0.22)

Changes in reaction times in a 
color-word stroop task were 

different between increase and 
decrease groups (0.37) 

Significant
(adjusted R2 = 

0.22)

2018
Taschereau-

Dumouchel et al. [9]
Phobia DecNef

Ventrotemporal 
cortex

To test if pairings of monetary reward and 
activations of the ventrotemporal cortex 
reduce fear to a specific object category

Yes
(0.60)

Skin conductance response to a 
fearful category decreased (0.56)

N/A

Watanabe T, Sasaki Y, Shibata K, Kawato M:Advances in fMRI real-time neurofeedback.
Trends in Cognitive Sciences, 21(12), 997-1010 (2017)  & https://bicr.atr.jp/decnefpro/

Medium, large even huge effect sizes 
(Cohen’s Dz) on brain and behavior changes

23



Biomarker and data-driven FCNef
application to mental disorder therapy

• NF score computed by rs-fcMRI based biomarker
• Larger reward for healthier network dynamics

③Average signals within ROIs computed

Time-series data

④Computing connectivity

①EPI 
imaging

⑤Decoding to 
compute score

0
8

⑥Feedback

②Data acquisition
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Showa 
before 

DecCNef

DAY 2 DAY 3DAY 1DAY 0 DAY 4

NFB training@ATR

ASD-like

TD-like

ATR
before

DecCNef

Showa 
after 

DecCNef
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Yamada T, Hashimoto R, Yahata N, Ichikawa N, Yoshihara Y, Okamoto Y, Kato N, Takahashi H, Kawato M: 
Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric 
disorders: a challenge for developing theranostic biomarkers. Int J Neuropsychopharm, 20, 769-781. (2017) 

Improvement of ASD liability estimated 
by rs-fcMRI biomaker after FCNef
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Yamada T, Hashimoto R, Yahata N, Ichikawa N, Yoshihara Y, Okamoto Y, Kato N, Takahashi H, Kawato M: Resting-state functional connectivity-based biomarkers and 
functional MRI-based neurofeedback for psychiatric disorders: a challenge for developing theranostic biomarkers. Int J Neuropsychopharm, 20, 769-781. (2017) 
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Subclinical
participants

Therapy resistant MDD patients

FCNef normalized abnormal positive functional 
connection between left dorsolateral prefrontal 
cortex and left precuneus in major depression



DecNef reduced responses to fear-conditioned 
stimulus without conscious exposure

Koizumi A, Amano K, Cortese A, Shibata K, Yoshida W, Seymour B, Kawato M, Lau H. Fear 
reduction without fear through reinforcement of neural activity that bypasses conscious 
exposure. Nature Human Behaviour, 1, e0006 (2016)
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Fear reduction using DecNef

reward

pairing rewards with the activation 
patterns which represent fear

Pre DecNef

DecNef
session
(low stress)

Fe
ar

 re
sp
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se

Conventional fear reduction by explicit 
presentations of fearful stimulus

Sk
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re
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se DecNef targeted fearful stimulus

DecNef non-targeted fearful stimulus
Induced Neural representation for 
fearful stimulusPost DecNefduring DecNef

day 1   2   3

Exposure therapy



DecNef reduced animal-phobic responses 
without exposure to feared animals

��

• Translation of DecNef to anxiety disorders including PTSD
• Decoder construction based on brain activities of non-phobic 

participants by hyperalignment while avoiding presentation of 
fearful stimuli to phobic participants

• Success of double-blinded RCT (target animal was known to 
neither participant or experimenter) disproves any placebo effect

Sk
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ct
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ce

 re
sp

on
se

Phobic of
e.g. snake

non-
phobic

Participants with 
phobia for two animals

Brain activity pattern of 
non-phobic participants

Brain activity pattern 
of phobic participants

Applicable to phobic patients
Taschereau-Dumouchel V, Cortese A, Chiba T, Knotts JD, Kawato M, Lau H. Towards an unconscious neural 
reinforcement intervention for common fears. Proc Natl Acad Sci U S A. 115(13), 3470-3475 (2018)
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Post 60 days

Single blinded
RCT is on going

DecNef intervention for PTSD patients

Chiba T, Kanazawa T, Koizumi A, Ide K, Taschereau-Dumouchel V, Boku S, Hishimoto A, Shirakawa M, 
Sora I, Lau HC, Yoneda H, and Kawato M. Current status of neurofeedback for Post-traumatic stress 
disorder: a systematic review and the possibility of decoded neurofeedback, Frontiers in Human 
Neuroscience, 13(233), https://doi.org/10.3389/fnhum.2019.00233 (2019)

PTSD severity scales significantly decreased one week, as 
well as 60 days, after DecNef intervention.

http://www.cns.atr.jp/~kawato/Ppdf/fnhum-13-00233.pdf


Dynamical disease

��

Arthur Winfree (1942-2002)
Heart, Sudden death, Chaos

Sci Am 1983 248: 144-9
Sudden cardia death: a problem in topology

Kawato M, Fujita K, Suzuki R, 
Winfree AT: Journal of Theoretical 
Biology, 98, 369-392 (1982).

Leon Glass
~1992 Dynamical diseases
Chaos (1995)
Chaos (2015)

Nature. 1984 Oct 18-24;311(5987):611-5.
Organizing centres for three-dimensional chemical 
waves.
Winfree AT, Strogatz SH.

1978 Indianapolis Airport

Ryoji
Suzuki

Kawato M, Suzuki R: Biological oscillators 
can be stopped -topological study of a 
phase response curve. Biological 
Cybernetics, 30, 241-248 (1978).



Proposal of topics
• Reproducible, causal and computational 

psychiatry based on multi-disorder and multi-
site “big” data, as well as multi-scale modeling

• Functional connectivity is just a convenient and 
tentative tool, thus next, multi-scale data 
assimilation and computational modeling for
quantifying abnormal dynamics should come

• Redefining causality in neuroscience by 
DecNef; certain brain dynamical attractors 
cause specific cognitive processes and/or 
mental disorders

• Neuroscience understanding of learning from a 
small sample; future AI such as conscious
robots based on revealed neural mechanisms
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by Kenji Doya
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マルチスケールにまたがる脳の統合的理解

Fan and Markram 2019, Frontiers in neuroinfomatics
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10cm1 cm100μm10μm 

by Okito Yamashita
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神経細胞レベルのシミュレーション
����1�1�"���	���#
�.=,#�!�
!.*,9�
���+1(<#�� -$/4'+")46:=)7<
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２．革新脳の達成目標

A. 霊長類の脳構造・機能マップの作成

マクロスコピック

メゾスコピック

ミクロスコピック

標準化された
脳テンプレートを
統一して使用し、
異なる階層の
データを統合
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Dopamine-dependent synaptic plasticity. In cortico-
striatal slices or co-culture preparations, tetanic stimulation of
cortical fibers inducing striatal cell firing results in long-term
depression (LTD) of corticostriatal synapses [8,24,25]. In contrast,
simultaneous stimulation of dopaminergic neurons in the substantia
nigra during cortical stimulation results in long-term potentiation
(LTP) with high frequency stimulation, and no change in synaptic
efficacy at low frequency stimulation (i.e., levels corresponding to
spontaneous firing) [9,10,26,27]. In addition, under dopamine
depletion, cortical stimulation does not alter corticostriatal synaptic
efficacy [8]. Fig. 1A shows that cortical glutamatergic input can
cause either LTD or LTP of corticostriatal synapses depending on
the strength of simultaneous dopaminergic input.

Calcium-dependent synaptic plasticity. Cortical stimul-
ation without dopamine input induces LTP of corticostriatal synapses.
In slice preparations cultured in magnesium-free solutions, tetanic
stimulation of cortical fibers induces LTP [11,28,29]. In anesthetized in
vivo preparations or co-cultures, the resting membrane potential of
medium spiny neurons alternates between an up-state of 260 mV and
a down-state of 285 mV, with a low frequency of approximately
1 Hz. During the up-state, when magnesium inhibition of NMDA
receptors is removed [30], tetanic stimulation of cortical fibers induces
LTP in corticostriatal synapses [31–34]. Therefore, even with little or
no dopamine, high levels of intracellular calcium, either through
inotropic glutamate receptors and voltage-dependent calcium channels
(VDCCs) or through endoplasmic reticulum (ER) calcium release via
activation of metabotropic glutamate receptors (mGluRs), can revert
LTD of corticostriatal synapses to LTP (Fig. 1B).

Intracellular signal transduction. The intracellular signaling
cascades that regulate synaptic efficacy of the corticostriatal synapse
have been extensively studied [35–39]. Medium spiny neurons are

divided into two subclasses: those expressing D1Rs, which project to
the basal ganglia output nucleus (reticular part of the substantia nigra
and internal segment of the globus pallidus), and those expressing D2-
type dopamine receptors (D2Rs), which project to the external segment
of the globus pallidus [40,41]. The present study modeled D1R-
expressing neurons based on previous literature and databases [42].
Fig. 2 shows the summary block diagram of the signaling cascade
model. The model details are provided in Materials and Methods.

Materials and Methods

Mathematical formulation
All signaling pathway reactions shown in Fig. 2 are represented

by binding and enzymatic reactions.
Binding reaction of molecule A and molecule B to form

molecule AB

AzB

kf

kb

AB, ð1 Þ

where kf and kb are rate constants for forward and backward

reactions, is simulated by the ordinary differential equation:

d½AB$
dt

~{
d½A$

dt
~{

d½B$
dt

~kf ½A$½B${kb½AB$: ð2 Þ

The rate constants kf and kb were related to the dissociation

constant Kd~kb=kf and the time constant t~1 =(kf zkb), i.e.,

kf ~
1

t(1 zKd )
and kb~

Kd

t(1 zKd )
.

Figure 2. Block diagram of the signal transduction model in medium spiny neurons. The red and blue arrows indicate activation and
inhibition, respectively. Detailed information on the regulatory pathways is provided in the Materials and Methods section, and the rough sketch of
the signal flow is as follows. Glutamate binds to its corresponding receptors and increases intracellular calcium. D1R binding to dopamine increases
cAMP. Calcium and cAMP alter the number of AMPA membrane receptors via downstream cascades and, thereby, regulate the synaptic efficacy of
the neuron. The bi-directional effect of calcium on IP3 receptor should be mentioned. The activation level (open probability) of IP3 receptor displays
a bell-shaped response curve to intracellular calcium concentrations. The IP3 receptor activation level is maximal when intracellular calcium
concentration is approximately 0 :2 mM [107]. However, more (and less) calcium reduces IP3 receptor activation. To represent this regulation, two
complementary arrows represent activation and inhibition from calcium to IP3 receptor in this diagram. In addition, one arrow originates from Ser137
and terminates at an arrow from PP2B to Thr34. Phosphorylation of Ser137 decreases the rate of Thr34 dephosphorylation by PP2B. Therefore, Ser137
contributes to disinhibition of the PP2B-Thr34 pathway [55]. The arrow from Ser137 represents this effect.
doi:10.1371/journal.pcbi.1000670.g002
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データ同化と脳ネットワークダイナミクスモデリングの
融合による意識生成メカニズムの解明
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Brain Data Assimilation Project
• Aim: Integrate varieties of brain data into coherent 

models to show how the brain works.
• Organization: Center for Brain Data Fusion
– Theory team: Okito Yamashita (ATR)

• multiscale data assimilation methods
– Data fusion team: Ken Nakae (Kyoto U)

• data-driven model building
– Computation team: Jun Igarashi (RIKEN)

• brain-scale simulation

• Impact: Understand robust, flexible, low-energy 
computation of the brain, and predict how that can 

fail and be restored/improved.
39by Kenji Doya
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脳状態は常に遷移しており意識レベルと関係している
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International Networking
• Partner Organizations

– International Brain 
Initiatives

– INCF
– Allen Institute
– Jülich Center
– Blue Brain Project
– Kavli Foundation
– Neurodata Without Borders
– International Brain 

Laboratories

• Advisory Board
– Karl Friston (UCL)
– Tomoyuki Higuchi (Chuo 

U)
– Christoph Koch (Allen 

Institute)
– Henry Markrum (Blue 

Brain)
– Terrence Sejnowski (Salk)
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Timeline
– 2020–2025: Foundation

• multiscale data assimilation framework
• data pipeline for mouse/marmoset brain
• data assimilation of resting brain on Fugaku

– 2025–2030: Extension
• model translation to human brain
• data pipeline for human brain
• data assimilation for behavioral/cognitive tasks

– 2030–: Application
• neuromorphic chip and OS development
• personalized assimilation for diagnosis/therapy
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