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Mathematical Engineering

Mathematical modelling

Mathematics m Real-world

Mathematical analysis Real-world problems

QD

understand, solve, optimize, control, and predict
(systems with difficulty of these approaches
= complex systems)
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Pl (Information Science Unit): Kazuyuki Aihara
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Experimntal
Neuroscience

Basic principles
underlying neural circuit
development and
functions

Complex six-layered
structure of the cerebral
cortex with recurrent
connections, gap
junctions, and
projections from the
limbic system

Feedforward and
feedback pathways
between lower and
higher cortical areas

_——————————---
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Mathematical Modeling and
Analysis on Complex
Neurodynamics in the Brain

Complex systems modeling of
neural circuit development
and functions as well as their
disorders

Bifurcation-theoretical analysis
on transitions between normal
and impaired neurodynamics
as well as between quasi-
periodic states

Nonlinear data analysis on
spatio-temporal neuronal data

Neuromorphic and neuro-
inspired computational models
and their hardware
implementation

-
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Novel Al

Psychiatric
and
Neurological
Disorders

Related Historical Inheritances
at Aihara’s Lab in UTokyo

» J. Nagumo’s neuronal

circuits
(1962)

* S-l. Amari's mathematical
brainscience (1970s-)

and information " information
Geometry

geometry (1980s-) and

Applications

Soror

Inzeinational ResearchCenter for New o ntelligence




Brain/MINDS Beyond

3-2. Surveys on next-generation Al technologies and development of fundamental technologies J

Research and Development on Next-Generation Al and its Key Technology
Based on Nonlinear Dynamics

Kazuyuki AIHARA

Ph.D., Professor, Institute of Industrial

Science, The UniverSity of Tokyo (_ MNonlinear Mathematical Modelin
) g ﬂ

Modeling of Transitions & Bifurcations M_od_e“lingqu

In this research project, we explore technological backgrounds of mathematical the Normal Brain the Impaired Brain
models related to information processing in the brain as well as next-generation ]
Al based on such models, review the possibility of realization of such next- S E—
generation Al technology and trends of state-ofthe-art research, and propose Enjf;fn:“;ﬁgc;:;m
important tasks necessary for the realization of next-generation Al that learns : :

from the dynamic brain particularly from the viewpoint of nonlinear dynamics with \ J

a focus on both functions of the normal brain and dysfunctions of the impaired
brain. Then, we develop basic mathematical technology for innovative brain-type
algorithms, and consider its applicability to robotics and mental illnesses.

«‘. Japan Agency for Medical Research and Development

AMED



From DNA to DNB(Dynamical Network Biomarkers)

Detecting early-warning signals of complex diseases
by dynamical network biomakers



DNB(Dynamical Network Biomarkers

Problem: Difficulty of Finding Excellent Single
Biomarkers. Impossibility of Detecting Early Warning

Signals for Imminent Transitions to Disease State

Proposal of an Entirely New Concept of Biomarkers that Provide the Early
Warning Signals through Dynamics with Correlated Fluctuations (Patents2012-
211921,2012-233886; Scientific Reports, 2, 342, 2012; 2, 423, 2012) ,
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Applications to Power Grids with large Renewable Energy, Complex
Engineering Systems, and Economical Data.
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Conventional
Static
Biomarkers

Dynamical
Network
Biomarkers
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Normal state

Disease progression



|_ocal Codim-1 Bifurcations

dX (t) . of
T = F(X(1)) Poincare > X(t+1) = 1 (x(1)) Linearization ~ c(t+1)= & s ()
teR Section te?Z
l IF-J\E v b0 . l -
Linearization / Bifurcation
d_ﬂ_f{z:d: LE#& n I i
dé(t) oF 0 =Pixi (FRIAIHE) Ana Y315
dt oX K7 o LYIGE ImA
Bifurcation Analysis L Neimark-Sacker
ImA
//—v Hopf . Saddle-node
- 5 1 ReA
. Saddle-nod i0d Doublk
0 » oaddle-no (i{ek Period Doubling
-1




Main Theorem

1. If both iand jare in DNB,

Pearson Correlation pee(x;, X;) — 1

Standard Deviation sd(X;) and sd(x;) —> oo
2. Ifonlyiisin DNB,

Pearson Correlation  PCc(Xi,X;) =0

Standard Deviation  sd(X;) — o butsd(x;) = bounded
3. If bothiand jare notin DNB,

Pearson Correlation |pcc(x;, x;)[—>a (0<a<1)

Standard Deviation sd(x;) and sd(x;) = bounded
Three Measurable Conditions ‘ Critical State



INE)
(Chen et al., Sci. Rep.,2:342,2012)

States Network

h

Concentration

Normal High

State

I Potential o<

Normal state

Reversible

Pre-disease
State

I Potential o

Disease progression

Irreversible Pre-disease state

Disease
State

Z)

Potential I a.

Zf» [ — High correlation

Disease state 0 Medium correlation
High deviation = Low deviation Low correlation




Composite Indicator based on DNB

I ::SDd ‘PCCd

PCCd : average PCC of DNB in absolute value
SDd :average SD of DNB
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Standard deviation

Peason's correlation coefficient

Composite index
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Numerical validation of theoretical results. (a) A
five-gene model for a DNB and an early-warning
signal. The network model and detailed
background are described in Supplementary
Information B. The tipping point is at P50 in the
theoretical model, at which the system undergoes
a critical transition or a bifurcation detected by z,
and z,. (b)—(c) When the system approaches the
tipping point (P50), z1 and z2 become closely
correlated with increasingly strong deviations
from P50.4 to P50.01. (d)—(e) Figures show the
curves of SDs and PCCs for the variables against
the parameter P, which clearly indicate the
tendency of z, and z,, i.e., their fluctuations
(SD(z,) and SD(z,)) and correlation ( |PCC(z,, z,) | )
increase drastically whereas their correlations
with other nodes ( |PCC(z,, z3) | ), |PCC(z,, z,) | ,
|PCC(z, z5) |, |PCC(z,, 25) |, |PCC(z,, 2,) |, @and
|PCC(z,, z5) | ) decrease drastically when the
system approaches the tipping point, which
satisfies all three criteria for the DNB. (f) The curve
shows the clear tendency of the composite index
near the

tipping point for the DNB composed of (z,, z,),
which can be used as the early-warning signal for
predicting the imminent change in the concerned
system.



Three Diseases

* Acute Lung Injury

e Liver Cancer (HBV, HCV)

 Lymph Cancer

Chen, et al., Scientific Reports, 2, 342, 2012
Liu, et al., Scientific Reports, 2, 813, 2012
Liu, et al., Medicinal Research Reviews, 2013



Application: prediction of lung injury and
liver cancer(from hepatisis to cirrhosis)

Phosgene-inhalation induced lung injury

. SD b PCC 0.48 C OPCC d Composite index
2.5 —#—SDsse ! 0,65 —+—PCCase ' —— OPCC case 4.5 —+—Compositecss | A
*[ |-a=SDcontrol ! —+—PCC control ! 0 45 —— OPCC control |—=— Compositecontrol ‘:
0.55 ! ' 30 'i
045 | vk 15
(1) T 0.39 . ‘ N P
I3 5 7 8 1 8§ 8 78 W55

Chronic hepatitis B liver cancer

f e g OPCC 45 h  Composite index
0.6 0.55 ' ]
0.5 0.45
W %5 2 3 4

(Chen et al., Sci. Rep.,2:342,2012)




17 healthy human volunteers
received Intranasal inoculation
of flu H3N2(Huang et al,PL0S
Genetics,2011).
Gene-expression profiles of
peripheral blood were analysed
by DNB.



(a)

Clinic symptomatic or asymptomatic subjects in influenza dataset (b) DNB-5 score for influenza infection (Symptomatic subjects)
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Fig. 4. Identifying the pre-disease state for live influenza infection of

17 humans based on a single sample. We demonstrate early diagnosis
of live influenza infection in 17 humans using a real biomedical dataset.
(a) The clinic symptoms (S) and non-symptoms (N) at different time
points among the 17 subjects with live influenza infection based on
real clinic tests. (b)-(c) show the DNB-S scores of nine single-sample DNE
symptomatic subjects (humans) and eight asymptomatic subjects
(humans) for influenza infection resulting from H3N2 virus. The pre-disease states or presymptom for influenza infection occurred around 29 h (i.e.
29, 36 and 45 h), whereupon the DNB-S scores became respectively higher than the threshold shown in (b). All symptomatic subjects were
correctly identified before the clinical diagnosis of the disease state (b), whereas all asymptomatic subjects showed no signals of the pre-disease
states and were also correctly classified (c). (d) The dynamic changes in the molecular network of a single-sample subject (Subject 1) at 0, 12, 29
and 45 h (sliding window) with the corresponding DNB, where the color of the nodes represents the fluctuation strength of molecular expressions,
and each edge represents the correlation between two nodes. It can be seen that at 29 h, there is a strong signal to indicate the pre-disease state
or pre-symptom

DNB

0 hr 12 hr 29 hr 45 hr

Rui Liu, Xiangtian Yu, Xiaoping Liu, Dong Xu, Kazuyuki Aihara, and Luonan Chen
Identifying critical transitions of complex diseases based on a single sample
Bioinformatics first published online February 10, 2014, doi:10.1093/bioinformatics/btu084



o

C o

3
- @ onginal O
o 330 -
45 2 22 7 shuffled (95 %) 40 4 o @ - {'“-
e = -
—_ J = I o (&)
E 40 g Wil e i E . 30 A ® P O tléj et
£ 35 1 e = # P o @
=2 £ 180 - ol < ol o ®,
z %0 g = = o B
c D
325 ] i d \““._. g —20 1 (ﬁ © week
] e ¥ LY—————————— @ 3
o 20 1 3 12345678 9101112131415 e 4
15 4 5 140 1 component number - <@ O&* o 3
o & @.°
10— 8 5 ~60 - ® @7
3 4 5 6 7 = 3 4 5 6 7 _:m 4 i

week week PC1 (25.6 %)

Body weights, blood sugar concentrations, and PCA of the transcriptome data. (A) Body
weights and blood sugar concentrations measured from TSOD mice. Error bars show 95%
confidence intervals. Red dashed lines show the suggested thresholds for defining obesity in
TSOD mice (body weight 240 g) and prediabetes in rodents (blood glucose level 2200 mg/dL).
(B) Scree plot of the largest 15 components. The number of meaningful PCs is estimated to
be the number of eigenvalues calculated from the original transcriptome data larger than the
95 percentiles of eigenvalues calculated from shuffled data. For more details, see
Dimensionality reduction in Materials and Methods. © PCA plot of the transcriptome of TSOD
mice (circles) and TSNO mice (diamonds). The numbers in parentheses denote explained
variance ratios corresponding to each PC. Regarding results of other meaningful
components, see Supplementary Fig. S1. PC: principal component.
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the best doctor the better doctor the inferior doctor

treats treats treats
diseases that have occurring diseases diseases that have
not occurred occurred.

Early diagnosis by
dynamical network biomarkers

23



DNB:

Common Components

+

Individual Components
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Two Applications of DNB Theory



Conclusion

o Harness of High-Dimensional Data for
Detecting Early-Warning Signals of State
Transitions like Complex Diseases.
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