Quantum information science and the technology frontier Jake Taylor December 17, 2019

Office of Science and Technology Policy

www.whitehouse.gov/ostp www.ostp.gov @WHOSTP

Photo credit: Lloyd Whitman

Quantum Sensing

Accuracy via physical law Concept: atoms are indistinguishable. Use this to create time standards, enables global navigation.

Concept: speed of light is constant. Use this to measure distance using a time standard.

Concept: electrons are quantized, have the same charge. Use this to calibrate electrical currents and voltages.

New modalities of measurement Challenge: measuring inside the body. Use quantum behavior of individual nuclei to image magnetic resonances (MRI)

Challenge: estimating length limited by 'shot noise' (individual photons!). Use quantum correlations between photons to reduce this noise (LIGO v3)

Challenge: measuring brain activity must be fast, sensitive. Use entanglement between magnetic sensors to increase bandwidth

New worldwide approach: the Quantum SI, started May 2019

Quantum Computing

Quantum simulation Chemistry, biology, materials science all depend on solving quantum mechanics problems

Recall: Simulating quantum mechanics is hard...

Solution: Use one system to simulate another

Quantum computation

Ideal case: programmable quantum computer, which is now moving from the lab to systems and engineering.

Atomic qubits

Superconducting qubits

Semiconductor spins

Quantum Computing

Quantum simulation Chemistry, biology, materials science all depend on solving quantum mechanics problems

Recall: Simulating quantum mechanics is hard...

Solution: Use one system to simulate another

Quantum computation

Ideal case: programmable quantum computer, which is now moving from the lab to systems and engineering.

Atomic qubits

Superconducting qubits

Semiconductor spins

And beyond: QUANTUM NETWORKING! 4

** Factoring SPARTS Advil (Shor's algorithm)

To the side of the second second state

WI

Qnetworks

ulf

osering of the

Quantum chemistry John Hancock

HHL

N

10 in

≡Bank of America≪

NISQ algorithms?

Machine Learning???

188

Brewbalance

Q simulation

Đ

The outfield Entanglement enhanced sensing Q computing Q algorithms Classical control Heuristic Q algorithms Q information science High sensing simulation Q simulation (materials) Q control Q compilers (next gen) Q programming

The Infield Q chemistry Q enhanced optimization New paradigms for ML Q sensing Middleware Full stack

The National Quantum Initiative

Signed Dec 21, 2018 11 years of sustained effort DOE: new centers working with the labs, new programs NSF: new academic centers NIST: industrial consortium, expand core programs

Coordination: SCQIS combined with a National Coordination Office and an external Advisory committee

Policy recommendations

- Focus on a science-first approach that aims to identify and solve Grand Challenges: problems whose solutions enable transformative scientific and industrial progress;
- Build a quantum-smart and diverse workforce to meet the needs of a growing field;
- Encourage industry engagement, providing appropriate mechanisms for public-private partnerships;
- Provide the key infrastructure and support needed to realize the scientific and technological opportunities;
- Drive economic growth;
- Maintain national security; and
- Continue to develop international collaboration and cooperation.

NATIONAL STRATEGIC OVERVIEW FOR QUANTUM INFORMATION SCIENCE

Product of the SUBCOMMITTEE ON QUANTUM INFORMATION SCIENCE under the COMMITTEE ON SCIENCE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL SEPTEMBER 2018

Building the research environment for transformative quantum science

- The quantum workforce? Need more people, from a broader set of backgrounds; requires a safe and inclusive work environment.
- Science-first approach? Need to maintain an open, rigorous approach to the research.
- Connecting science to society? Must continue to balance innovation and disruption, from industry to security to citizens.
- Efficient and effective? Leverage existing approaches, minimize administrative burden, nurture a culture of discovery, and enable responsible risk-taking.

UPDATE FROM THE NATIONAL SCIENCE AND TECHNOLOGY COUNCIL JOINT COMMITTEE ON RESEARCH ENVIRONMENTS

Product of THE WHITE HOUSE OFFICE OF SCIENCE AND TECHNOLOGY POLICY

July 9, 2019

Quantum industry and the frontier

- Current quantum technology: atomic clocks, nuclear magnetic resonance, modern telecom, LIGO
- Next generation quantum?

- Improved computational approach to materials, chemistry
- Fundamental advances in condensed matter, high energy theory
- New understanding of optimization, machine learning
- Spin-offs: Quantum random number generators, new sensing modalities, better PNT, new qubit technologies, new analog microwave and optical technologies
- The 10 year outlook?
 - The beginnings of a sea change for corporations and government the need to incorporate quantum computing and technologies into their business model
 - Unimagined applications are around the corner, but only if we explore!

Office of Science and Technology Policy

www.whitehouse.gov/ostp www.ostp.gov @WHOSTP

