ムーンショット型研究開発事業

目標2:2050年までに、超早期に疾患の予測・予防をすることができる社会を実現

令和6年3月23日 公開フォーラム2024~治すから防ぐ医療へ~

パンデミックの脅威から開放された社会を目指して

大阪大学 感染症総合教育研究拠点 大阪大学 微生物病研究所

松浦善治

人類と感染症の歴史

7万年前

数千年前

紀元前6世紀

15~17世紀

18世紀

20世紀初頭

コッホなどによる細菌学の

パスツール 炭疽菌ワクチ

BCG

狂犬病ワクチ:

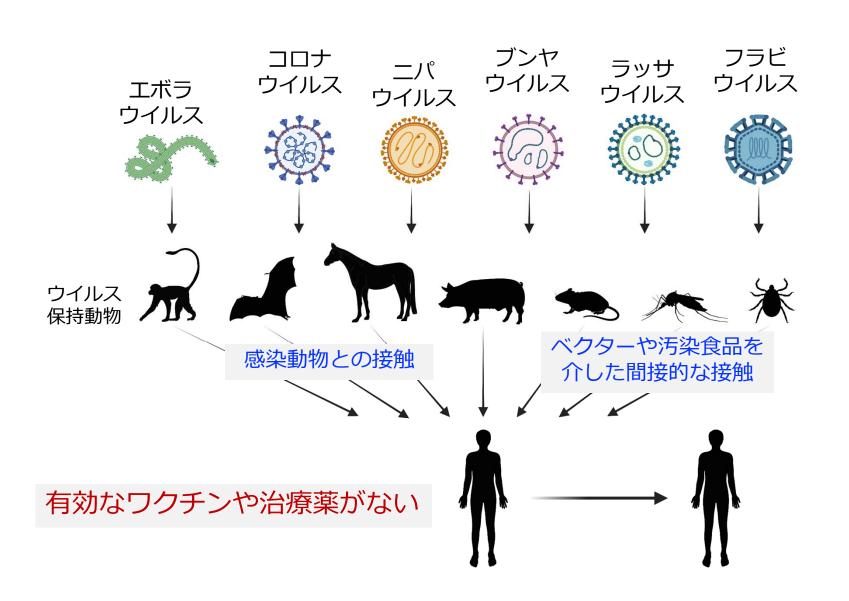
1950年

黄熱ワクチン

天然痘根絶

新興ウイルス感染症に直面

エイズ, SARS, ジカ熱, MERS, 新型コロナ・・・・



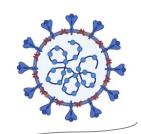
人類と感染症の歴史

重要感染症はRNAウイルスによる人獣共通感染症である

世界の感染症対策

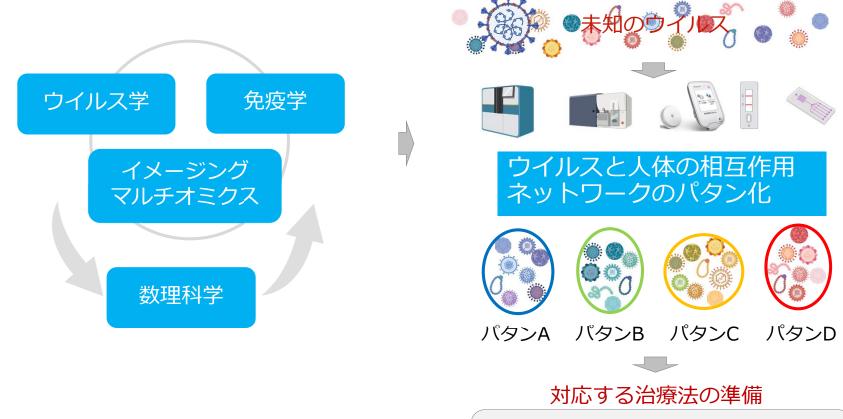
Coalition for Epidemic Preparedness Innovations

国立研究開発法人日本医療研究開発機構


先進的研究開発戦略センター

ウイルス毎に

ワクチンや治療薬を開発している

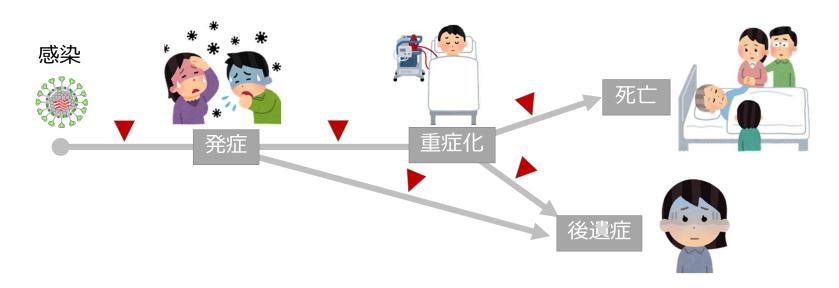


しかしながら・・

ウイルスの出現は予測できない 予防治療法の開発には時間を要する

ウイルス感染による生体応答でウイルスをパタンに分類する

未知のウイルスに対しても各パタン に応じた超早期の予防治療が可能


ウイルス感染症における未病

ウイルス感染症はウイルスの細胞への**侵入**を起点とすることからがん、認知症、糖尿病等とは**未病の概念**が異なる

重症化や死亡といった**急激な 状態変化**が起こる前の状態

この時に適切に**介入**できれば 重篤な変化を未然に防げる

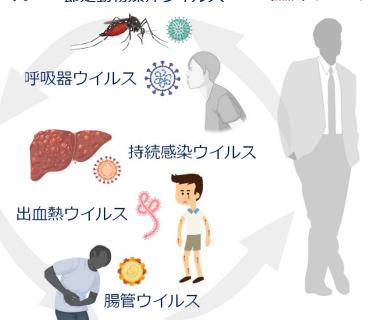
ウイルス感染による宿主応答の包括的解析により未病を理解する

相互フィードバック

節足動物媒介ウイルス

臨床データ

免疫学的解析


免疫系細胞の変化 腸内細菌の変化

イメージング解析

宿主応答可視化 技術開発

数理解析

データ抽出のため の解析技術開発

ウイルス感染による生体反応の数理モデルを作成

ウイルス学

免疫学

九大・澤

阪大・松浦

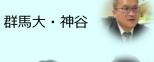
阪大・小林

ウイルス感染モデルの作製と免疫学的解析

イメージング マルチオミクス

数理科学

ウイルス学



IFV感染モデル

SARS-CoV-2 感染モデル

RSV感染モデル

節足動物媒介ウイルス

WNV, JEV, DENV 感染モデル

RV感染モデル

HAZV, CCFHV 感染モデル

持続感染ウイルス

HCV, HBV 感染モデル

免疫学

CD8T細胞

CD4T細胞

徳島大・安友

阪大・山本

樹状細胞

マクロファージ

千葉大・中島

京大・竹内

支持細胞, 常在細菌叢

ストローマ 細胞

常在細菌

慶應大・長谷

山梨大・森石

ウイルス学

免疫学

ウイルス感染後の宿主応答や粒子を観察する

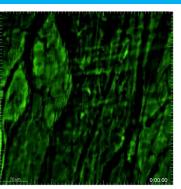
イメージング マルチオミクス

数理科学

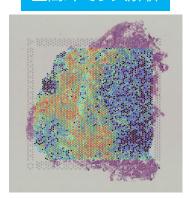
ウイルス感染動物モデルの観察

東大・岡田康志

理研・岡田峰陽



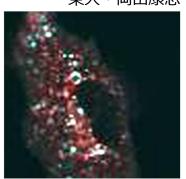
東大・鈴木


臓器内分布

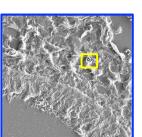
3次元動態・遺伝子発現

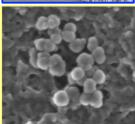
空間オミクス解析

オルガノイド 深部観察



エビデント・阿部

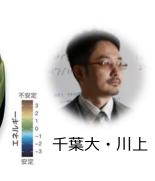

細胞内 動態



東大・岡田康志

千葉大・池原

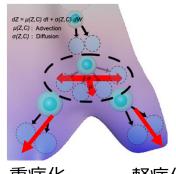
ウイルス 直接検出 ウイルス学


免疫学

ウイルス感染の重篤な変化の予兆を捉える

イメージング マルチオミクス

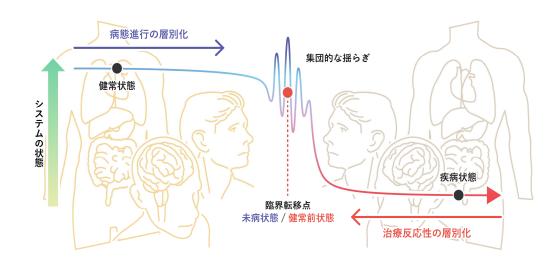
数理科学


状態を見る

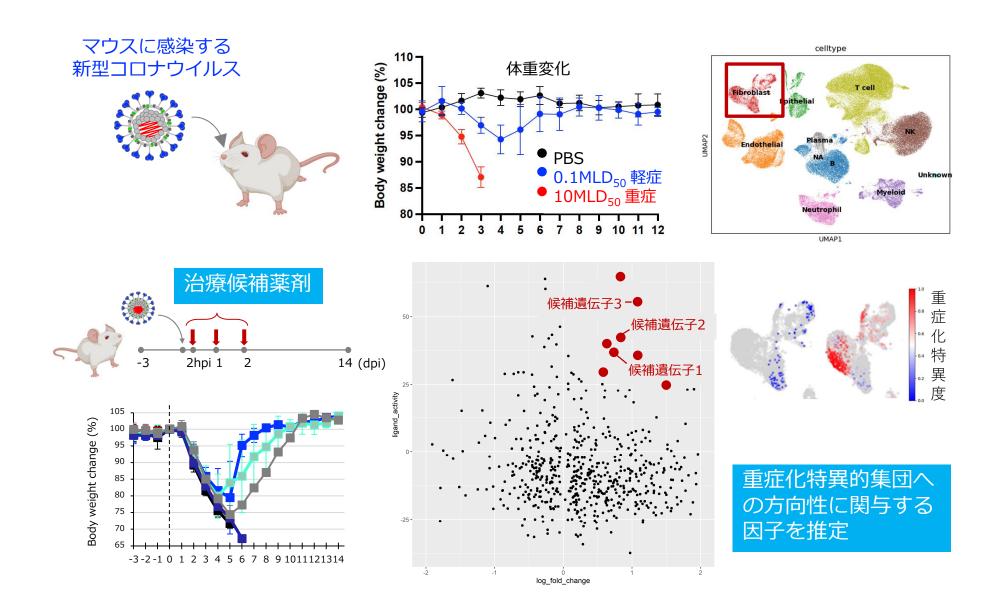
機械学習

深層学習

重症化


軽症化

ゆらぎを見る


数理モデル

名大・岩見

新型コロナウイルスの重症化特異的な細胞を標的とした治療介入

We choose to go to the Moon John F. Kennedy

Moonshot for Human Well-being

人々を魅了する野心的な目標を掲げて、世界中の研 の英知を結集しながら、困難な社会課題の解決 指し、挑戦的な研究開発を進める研究開発制度 2050

JAXA/NHK

ウイルス感染症の予測は困難であり制御法の開発 は後手に回らざるを得ない

2024

ウイルスと人体の相互作用ネットワークのパタン化 各パタンに対応した超早期の診断・治療法の確立 未知のウイルスに対する先制的な制圧法の準備

日々のモニタリングデータに基づいて意識せずに免疫環境を日常的 に自動調整するシステムの開発

2050

新興感染症の脅威からの解放された社会

JAXA/NHK