

JPMJMS2065 Large-Scale Silicon Quantum Computer

7/20/2023 PM Hiroyuki Mizuno

Principal Investigators (PIs)

HITACHI H. Mizuno

Kobe Univ. M. Nagata

Tokyo Tech T. Kodera

RIKEN T. Nakajima

Tokyo Tech J. Yoneda

Background and motivations

Scaling is one of the advantages of silicon qubits, but in fact they have only achieved up to 6 qubits.

■ In other words, large-scale integration is still a challenge.

P2

B3 P3

nMOS Intel + QuTech (2021)

arXiv:2101.12650 28Si w/ 300mm wafer

https://media.nature.com/original/mag azine-assets/d41586-022-00047-0/d41586-022-00047-0.pdf

SiGe RIKEN (2022)

QuTech + TU Delft (2022)

https://www.nature.com/articles/s41586-022-04986-6

https://arxiv.org/abs/2202.09252

6 qubits

3 qubits & Quantum error correction

Silicon qubits get closer to achieving error correction

Ada Warren & Sophia E. Economou

The results of all three groups move silicon-based quantum-information processing a step closer to offering a viable quantum-computing platform.

The next experimental milestone for this system would therefore be to build a larger array of quantum dots hosting two-qubit gates with fidelities as high as those demonstrated by Xue et al. and Noiri et al., despite the presence of more qubits. A further breakthrough for such a system would be the demonstration of quantum error correction.

1

Expectations for silicon semiconductor technology

- The question is whether the current silicon qubits are taking full advantage of silicon semiconductor technology.
- Silicon semiconductor technology has two major aspects.

(1) Miniaturization of devices

(2) Integration of a large number of devices

Pros

 ✓ Optimize qubit structure (Size, distance, etc.)

Cons

✓ Increase noise (crosstalk etc.)

Pros

- ✓ Obtain a large number of qubits with remarkable uniformity
- ✓ Handle a large number of wires from qubit arrays by embedding CMOS circuitry
- Achieve high-precision control of qubit arrays

Cons

✓ Result in high heat density

We need to take advantage of both of these two aspects.

Our approach (Top-Down Approach)

Approach changed to take full advantage of silicon semiconductor technology

Quality (Fidelity)

Large-scale silicon quantum computer

The final goal is to implement almost all elements in a single fridge.

https://spectrum.ieee.org/techtalk/semiconductors/design/google-team-buildscircuit-to-solve-one-of-quantum-computingsbiggest-problems

R&D Themes		Pls
1	Quantum computing system	Hitachi/ Hiroyuki Mizuno
2	Multi-chip cryogenic packaging	Kobe Univ./ Makoto Nagata
3	Hot silicon qubits	Tokyo Tech/ Tetsuo Kodera
4	Quantum computing in small qubit systems	Tokyo Tech/ Jun Yoneda RIKEN/ Takashi Nakajima

R&D Theme 1: Quantum computing system

Qubit array chip

Formation of	Sequence of quantum computing				
Quantum dots array		Initialization	Operation	Readout	
2D Array Formation	Quantum Circuits	Initialization $ 0\rangle^{\otimes 128}$	Operation 1 qubit: Rx, Ry, Rz, 2 qubit: SWAP,	TransferReadSpin8 parallel	
OS control circuit CMOS circuit CMOS control circuit	Qubit status	Electron Spin		$ 0\rangle 1\rangle$ or (1)	
Integrate CMOS circuits		Set single electron in each quantum dot in the array	RF signal and bias voltages	Read out with converting spin to charge	
on the same die				to current	

Developed a "Embedded-Qubit CMOS process (QCMOS)," which integrates qubit arrays and the peripheral circuits that control it on a single die.
 Developed a "Active Si interposer" that can integrate circuits on an interposer.

Qubit array using MOS-type qubit

 On-chip CMOS control circuitry can manage a large number of wires from a qubit array.

65-nm Embedded-Qubit CMOS process (QCMOS)

Heterogeneous integration is possible.
 (SiGe + CMOS)

180-nm Active Si interposer

R&D Theme 1: Quantum computing system Initialization of qubit array

Developed single-electron pumping technique for highly reliable initialization.
 Demonstrated 100 MHz single-electron pump transport with 1 hour stability and 99% accuracy at 4K.

Small-scale experimental circuits

T. Utsugi et al., SSDM (2022)

Qubit operation in SiGe small qubit system (1)

- First demonstration of high-fidelity 2-bit-gate operation above the error tolerance threshold (Simultaneously with QuTech et al.)
- Successfully developed a qubit system that enables verification of high-fidelity qubit \checkmark operations.

Ť

 \checkmark

60

R&D Theme 4: Quantum computing in small qubit systems Qubit operation in SiGe small qubit system (2)

Demonstrating the feasibility of achieving error tolerance with silicon qubit arrays

- ✓ Generates 3-qubit quantum entangled states (GHZ states)
- ✓ World's first demonstration of silicon phase error correction circuit

- K. Takeda *et al.*, Nat. Nanotechnol. **16**, 969 (2021)
- K. Takeda *et al.*, Nature **608**, 684 (2022)

RIKE

 Remarkable progress has been made in small systems using SiGe qubits. However, it has been a challenge in qubit arrays using Si-MOS qubits.
 Theoretical studies and multiple device prototypes (using multiple fabs) are being proceeded in parallel.

	RIKEN / SiGe	This project / Si-MOS	Concerns resulting from differences
Device structure	B2 B3 P1 P2 P3 Si QW	(a) 100 nm QG1 JG2 QG3 QG4 JG0 QG4 JG2 QG3 QG4 JG2 QG4 JG2 DG3 QG4 JG2 DG3 QG4 JG2 DG3 QG4 DG4 DG4 DG4 DG4 DG4 DG4 DG4 D	
Basic properties	 Isotopic content: ²⁹Si 0.08%, ³⁰Si 0.00% Mobility: 1.5x10⁵ Effective mass: 0.13 	 Isotopic content: ²⁹Si 4.7%, ³⁰Si 3.1% Mobility: 1.0x10⁴ Effective mass: 0.14 	• Purified wafers can be introduced in the future
Confinement structure (Perpendicular direction)	 Well structure: SiGe 30nm / Si 8nm / SiGe 30nm Gate material: Al/Al₂O₃ 	 Well structure: SiO₂ 5nm / SOI 50nm / BOX 145nm Gate material: Poly-Si/SiO₂ 	Valley degeneracy/splittingCharge in the gate
	• Si - SiGe surface	• SiO ₂ - Si surface	Surface roughness
structure	Isolation: Field isolation	 Isolation: Shallow-Trench- Isolation (STI) 	• Fixed charges/defects due to STI
(III-plane direction)	Dimensions: Unknown	• Dimensions: 60 nm	Multiple quantum dots
Spin operation	• Spin operation: EDSR	Spin operation: ESR	 Required RF power transfer has been confirmed by simulation
system	 Local <i>B</i> generation: Micromagnets (Co/Ti) 	Local <i>B</i> generation: Local current	 Heat is the biggest concern, but not a problem in current simulation

R&D Theme 1: Quantum computing system

Shuttling qubit operation

- In addition to the operation of qubits in small systems, another concern is the operation of qubits in qubit array systems. Shuttling qubit separates the electron from the quantum dot, meaning that a "qubit" can move (shuttle).
- ✓ Qubit array are divided into Bus/Aisle/Seat regions in order to dynamically rearrange qubit without congestion.
- ✓ It suppresses crosstalk and enables all-to-all connections among up to 56 qubits in a 16 x 8 qubit array.

✓ Shuttling qubits create a new categorization of qubits

 Shuttling qubits take advantage of silicon semiconductor technology and use quantum dots quite luxuriously.

Inspire the Next

Conventional

Shuttling

Demonstration of 6-Qubit QAOA operation

R&D Theme 1: Quantum computing system

Readout

- High-frequency reflectometry measurement is widely used. Challenge is that it is difficult to support large-scale qubit integration.
 Developed a PMOS sensor capable of detecting a single electron.
- ✓ If the difference in the number of electrons can be converted into a current change of the order of nA, the sense amplifier circuit used in SRAM/DRAM becomes possible.

10-10

-1.0

-0.9

-0.8

-0.7

 V_{SGS} (V)

-0.6

- ✓ Potential barrier in the channel region of the PMOS is lowered due to electron confinement to the PMOS sensor.
- ✓ This causes the current in the PMOS sensor to change on the order of nA.

-0.5

R&D Theme 1: Quantum computing system

Cryogenic Control Chip (1)

■ 40-nm CMOS cryogenic control chip was developed and is evaluating.

Cryogenic Control Chip

of dilution refrigerator

20 GHz Gaussian waveform

Circuit Blocks	Characteristics
(1) Timing Generator	 Timing Rage: 1 ns ~ 2 ms, Resolution: 1 ns
(2) Microwave Generator	 20 GHz microwave signal including PLL & mixer Arbitrary waveform shapes (including Gaussian waveform) Pulse width: 0.1 ~ 10 µs, Step: 0.35° Amplitude: -15 ~ 3 dBm Phase error: <5.69° (Improved circuits under development)
(3) Bias Voltage Generator	 59 Channels Voltage range: 0 V ~ 2.5 V, Resolution: 16 bit (1 LSB = 40 μV)

R&D Theme 2: Multi-chip cryogenic packaging

Cryogenic Control Chip (2)

Cryogenic CMOS circuit design enabled high-performance analog circuits.

• Cryo-DAC for Bias voltage generation

- ✓ 16 bits (40 µV/LSB)
- Small-size Low-power architecture 0.02 mm²/ch
- Linearity compensation (Patent pending)

- Cryo-ADC for chip internal ckts compensation
 - ✓ 11 bits, 100 MS/s
 - ✓ Async. sequential comparison architecture
 - ✓ Offset compensation

Quantum Operating System

SDK: Software Development Kit, OS: Operating Systems

 Provide a multi-role usage environment for various users: quantum physics, quantum algorithm researchers, etc.

Environmental monitoring system

Monitor temperature and control signal waveforms that affect the fidelity of qubits

180-nm Active Si interposer

Measurement of temp. dependence of noise to assess "hot operation" feasibility

- ✓ We observed weak temperature dependence of charge noise in our silicon devices
 - For electrons (in an n-type QD): 1/f component $\lesssim 1 \ \mu eV/\sqrt{Hz}$ @ 1 Hz up to ~1 K
 - For holes (in a p-type QD): 1/f component $\lesssim 1 \ \mu eV/\sqrt{Hz}$ @ 1 Hz up to ~2 K
 - cf. Charge noise level in few-electron SiGe QDs at 50 mK: $\lesssim 1~\mu eV/\sqrt{Hz}$ @ 1 Hz
 - ⇒ Promise for hot silicon qubits

4.0 K

10

10²

10

Frequency (Hz)

10³

10

Temperature (K)

Error correlation of SiGe qubit arrays

Observed world's firstly the correlation of qubit phase noise

✓ Spatial correlation of qubit errors becomes apparent when qubits are arrayed, which is related to ease of error correction.

- ✓ Observed relatively large correlation of about 70%
- ✓ From anti-correlation to correlation
 - \rightarrow Depends on charge noise source spatial distribution

- Quantum computer R&D is shifting from a scientific curiosity phase to a technology development phase.
- I believe that for a quantum computer to have industrial value, it must be large scale in addition to be high fidelity. In this project, we're going to achieve a large-scale silicon quantum computer through a top-down approach in order to take full advantage of silicon semiconductor technology.
- In the past three years, we have developed several key technologies in addition to many remarkable research results.
- We will continue to demonstrate qubit operation in small systems, and at the same time, we will move forward with system integrations to achieve stable qubit operation and further improve the fidelity of qubit operation.

