2023/07/19 9:30-10:00 Moonshot Goal 6: International Symposium 2023

Progress reports on Development of Integration Technologies for Superconducting Quantum Circuits

Secure System Platform Research Laboratories NEC Corporation Tsuyoshi Yamamoto

https://ms-iscqc.jp/en/

Table of contents

- 1. Introduction of the project
- 2. Progress report
 - Overview
 - Demonstration of Kerr cat qubit
 - SIS-mixer-based microwave amplifier
- 3. Plans for the second half of the project

Superconducting qubit

electric circuit made of superconductor and Josephson junctions

- nonlinear oscillator with ~5 GHz resonance frequency
- operated at ~10 mK using a dilution refrigerator
- ◆ lithographically fabricated (⇔ decoherence)

◆ design flexibility (⇔ non uniformity)

Y. Nakamura et al., Nature **398**, 786 (1999).

Superconducting NISQ processors

Google

Arute et al., Nature **574**, 505 (2019).

Quantum supremacy using a programmable superconducting processor

In reaching this milestone, we show that quantum speedup is achievable in a real-world system and is not precluded by any hidden physical laws. Quantum supremacy also heralds the era of noisy intermediatescale quantum (NISQ) technologies¹⁵. The benchmark task we demon-

IBM, 433 qubits

IBM Unveils 433-Qubit Osprey Chip - IEEE Spectrum

RIKEN RQC, 64 qubits

<u>理化学研究所量子コンピュータ研究センターセンター長中</u> <u>村泰信氏|電子デバイス産業新聞(旧半導体産業新聞)</u> (sangyo-times.jp)

USTC, 66 qubits

Zhu et al., Science Bulletin **67**, 240 (2022).

Rigetti, 80 qubits

<u>Rigetti Announces Commercial Availability of Aspen-M</u> <u>System and Results of CLOPS Speed Tests</u> (hpcwire.com)

Orchestrating a brighter world **NEC**

beyond NISQ

https://www8.cao.go.jp/cstp/english/moonshot/concept6_en.pdf

Toward realization of fault-tolerant QC

Two main problems in hardware development:

required large number of physical qubits

Physical qubit error rate	10-3	10-6	10-9
Physical qubits per logical qubit	15,313	1,103	313
Total physical qubits in processor	1.7×10^{6}	1.1×10^{5}	3.5×10^4
Number of T state factories	202	68	38
Number of physical qubits per factory	8.7×10^{5}	1.7×10^4	5.0×10^{3}
Total number of physical qubits including T state factories	1.8×10^{8}	1.3×10^{6}	2.3 × 10 ⁵

TABLE 3.1 Estimates of the Resource Requirements for Carrying Out Error-Corrected Simulations of a Chemical Structure (FeMoco in Nitrogenase) Using a Serial Algorithmic Approach for Hamiltonian Simulation and the Surface Code for Error Correction

Quantum Computing: Progress and Prospects (2019)

 $\sim 10^8$ qubits?

- not scalable wiring & electronics
 - >1 coax line per qubit from RT to mK for control
 - \bullet bulky $\mu\text{-wave}$ components (amplifier, isolator) for readout

 $<\sim 10^2$ qubits?

Required technologies

e.g. power consumption vs. logical error rate

I. Byun et al., Proceedings of the 49th Annual International Symposium on Computer Architecture, 366 (2022).

Orchestrating a brighter world **NEC**

Beyond brute force approach

inter-chip connection (Rigetti)

A. Gold et al., NPJ Quant. Inf. 7, 142 (2021).

cryo-CMOS (Google)

J. C. Bardin et al., IEEE J. Solid-State Circuits 54, 3043 (2019).

F. Lecocq et al., Nature **591**, 575 (2021).

stacked chip structure (MIT)

D. Rosenberg et al., IEEE Microw. Mag. 21, 72 (2020).

qubit control using SFQ pulse (Wisconsin/Syracuse)

E. Leonard Jr. et al., Phys. Rev. Applied 11, 014009 (2019)

qubit control using Josephson pulse generator

Architecture for superconducting quantum computer system

On-line quantum error correction using SFQ decoder

Fig. 3. Concept of Batch- and Online-QEC

the Univ. of Tokyo Y. Ueno et al., 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 451-456 Scalable qubit control system using SFQ circuits

Figure 5: Overview of our DigiQ architecture.

Univ. of Chicago M. R. Jokar et al., arXiv:2202.01407. Optimization of error correction micro architecture using Cryo-CMOS and SFQ circuits

Seoul Univ.

I. Byun et al., Proceedings of the 49th Annual International Symposium on Computer Architecture, 366 (2022).

EC

Project teams

gubit decoherence, fabrication with multilayer process, magnetic junctions, bosonic gubits

R&D Target 2: hardware system for integrated superconducting qubits

refrigerator, packaging, cryogenic amplifiers

ULVAC ULVAC CRYOGENICS INC.

R&D Target 3: scalable electronics for quantum

error correction

RT electronics, cryo-electronics(superconducting flux quantum circuits, cryoFPGA, cryoCMOS), QC architecture

room-temp electronics cryo-electronics qubit physics refrigeration system **Orchestrating** a brighter world NFC

Research themes and PI's

R&D Target 1: high-quality superconducting qubit for FTQC R&D Target 2: hardware system for integrated superconducting qubits R&D Target 3: scalable electronics for quantum error correction M. Negoro

Goals of the project

Control and readout with RT electronics Coax cables > 1/qubit Evaluation of individual Error correction components with cryo-electronics e.g. Coax cables < 1/qubit SFQ demultiplexer (figure), SIS-mixer based amplifier,

etc

Research progress

Research highlights (Target 1: high-quality superconducting qubit for FTQC) details later

RIKEN + NICT teams

High-performance transmon qubits with an epitaxially grown TiN film

A. Noguchi et al., APS March Meeting 2023, M73-5

NTT team

Identification of different types of TLS defects

L. V. Abdurakhimov et al., PRX Quantum 3, 040332 (2022).

Gate error analysis in SC bosonic qubit

Tokyo university of science team

Wigner tomography and gate operations of Kerr cat qubit

lyama et al., arXiv:2306.12299.

S. Kwon et al., NPJ Quantum Inf. 8, 40 (2022). \Orchestrating a brighter world

Research highlights (Target 2: hardware system for integrated superconducting qubits) details later

Research highlights (Target 3: scalable electronics for quantum error correction)

Nagoya Univ. + NEC teams

Design and operation of low-power SFQ circuits (*j*_c=255 A/cm², *P*=7.5 nW/JJ)

M. Tanaka et al., IEEE Trans. Appl. Supercond. **33**, 1700805 (2023).

K. Okamoto et al., Jpn. J. Appl. Phys. **61**, SC1049 (2022).

NBS + Keio Univ. + Univ. of Tokyo teams

Cryogenic operation of NanoBridge

Cryo-ADC prototype device

Measured Spectra at 4.6K with 125MHz input

K. Yamashita et al., IEEE Custom Integrated Circuit Conference (CICC 2023).

Wigner tomography and gate operations of Kerr cat qubit

Hardware-efficient FTQC using Kerr cat qubit

- Theory of Kerr cat qubit
 - P. T. Cochrane et al., Phys. Rev. A 59, 2631 (1999).
 - H. Goto, Phys. Rev. A 93, 050301 (2016).
 - S. Puri et al., npj Quantum Info. 3, 18 (2017).
- High-fidelity gate operation
 - T. Kanao et al., Phys. Rev. Appl. 18, 014019 (2022).
 - H. Chono et al., Phys. Rev. Res. 4, 043054 (2022).
- Proposal of bias preserving gate
 - S. Puri et al., Sci. Adv. 6, eaay5901 (2020).
- Error-correction code with high error threshold
 - A. S. Darmawan et al., PRX Quantum 2, 030345 (2021).
- Experiments
 - Z. Wang et al., Phys. Rev. X 9, 021049 (2019).
 - A. Grimm et al., Nature **584**, 205 (2020).
 - N. E. Frattini et al., arXiv:2209.03934.
 - J. Venkatraman et al., arXiv:2211.04605.

drives (such as the two-photon

are applied

drives, coupling drives for cx gates and drives for single-qubit gates)

X

SNAIL

Darmawan et al.. PRX Quantum 2021

NFC Irchestrating a brighter world

Hamiltonian of KPO

$$\mathcal{H}_{\rm KPO} = \hbar\omega_0 \left(a^{\dagger}a + \frac{1}{2} \right) - \frac{E_{\rm c}}{12} (a^{\dagger} + a)^4 + \frac{\hbar\omega_0}{4} \frac{\delta E_{\rm J}}{E_{\rm J}} (a^{\dagger} + a)^2 \cos \omega_{\rm p} t$$

rotating frame at $\omega_{\rm p}/2$, and RWA

 $E_{\rm J}(t) = E_{\rm J} + \delta E_{\rm J} \cos \omega_{\rm p} t$

$$\hat{\phi} = \left(\frac{2E_{\rm c}}{E_{\rm J}}\right)^{1/4} (a^{\dagger} + a)$$
$$\hat{Q} = \mathrm{i}\left(\frac{E_{\rm J}}{2E_{\rm c}}\right)^{1/4} (a^{\dagger} - a)$$

$$\mathcal{H}_{\rm KPO}'/\hbar = \Delta a^{\dagger}a - \frac{K}{2}a^{\dagger}a^{\dagger}aa + \frac{\beta}{2}(a^{\dagger^2} + a^2)$$

T 2

detuning Kerr nonlinearity parametric drive

$$\Delta = \omega_0 - K - \omega_p / 2$$
$$K = E_c$$
$$\beta = \frac{\omega_0}{4} \frac{\delta E_J}{E_J}$$

Generation of Schrodinger's cat state

$$\mathcal{H}_{\rm KPO}/\hbar = -\frac{K}{2}a^{\dagger}a^{\dagger}aa + \frac{\beta}{2}(a^{\dagger^2} + a^2)$$
$$= -K\left(a^{\dagger^2} - \frac{\beta}{K}\right)\left(a^2 - \frac{\beta}{K}\right) + \frac{\beta^2}{K}$$

P. T. Cochrane et al., Phys. Rev. A 59, 2631 (1999).
H. Goto, Sci. Rep. 6, 21686 (2016).

S. Puri et al., npj Quantum Info. **3**, 18 (2017).

Coherent state is an eigenstate of annihilation operator a, $a|\alpha\rangle = \alpha |\alpha\rangle$

$$H_{
m KPO}$$
 has degenerate eigenstates of $|\pmlpha
angle$, where $\ lpha=\sqrt{rac{eta}{K}}$

Generation of Kerr cat qubit

Wigner tomography

Device picture (coupled KPO device)

lyama et al., arXiv:2306.12299.

c.f.

Z. Wang et al., Phys. Rev. X 9, 021049 (2019).

A. Grimm *et al.*, Nature **584**, 205 (2020).

R_x gate

β

 $|0\rangle$

P. T. Cochrane et al., Phys. Rev. A **59**, 2631 (1999). H. Goto, Sci. Rep. 6, 21686 (2016). S. Puri et al., npj Quantum Info. **3**, 18 (2017).

single-photon drive @ $\omega_p/2$

$$\mathcal{H}_{\rm KPO}/\hbar = -\frac{K}{2}a^{\dagger}a^{\dagger}aa + \beta(a^{\dagger^2} + a^2) + E_x(t)(a + a^{\dagger})$$

 $|\alpha\rangle + |-\alpha\rangle$

produces energy difference between $|\alpha\rangle$ and $|-\alpha\rangle$

$$\langle \alpha | E_x(t)(a+a^{\dagger}) | \alpha \rangle = 2\alpha E_x(t)$$
$$\langle -\alpha | E_x(t)(a+a^{\dagger}) | -\alpha \rangle = -2\alpha E_x(t)$$

R_z gate

temporarily remove the two-photon drive. Grim et al., 2020 🔍

$R_{\rm x}$ and $R_{\rm z}$ gate operations

lyama et al., arXiv:2306.12299.

Orchestrating a brighter world **NEC**

SIS-mixer-based microwave amplifier

Low-noise microwave amplifier for qubit readout

PHYSICAL REVIEW APPLIED 17, 044009 (2022)

Datasheet LNF-LNC4_8F

4-8 GHz Cryogenic Low Noise Amplifier

RF Bandwidth	4-8 GHz	
Noise Temperature	1.5 K	
Noise Figure	0.022 dB	
Gain	44 dB	
DC power (typical)	V_{ds} = 0.6 V, I_{ds} = 13 mA*	
RF Connectors	Female SMA**	
DC Connectors	9-pin Female Nano-D	

P~10 mW

Performance of a Kinetic Inductance Traveling-Wave Parametric Amplifier at 4 Kelvin: Toward an Alternative to Semiconductor Amplifiers

M. Malnou[®],^{1,2,*} J. Aumentado,¹ M.R. Vissers,¹ J.D. Wheeler,¹ J. Hubmayr[®],¹ J.N. Ullom,^{1,2} and J. Gao^{1,2}

Noise temperature ~1.9 K

P ~ 100 uW

(RF driven)

Scalability problem in radio astronomy

Superconducting receivers in telescopes go from single-beam to multi-beam

● CHARM 1000 - To 1000 beams SMART of beams BEARS 100 ●CHAMP+ **OSTAR** Number 10 HARP Desert STAR SuperCam 500 1000 **Observation efficiency proportional to the number of beams** ⊚Kappas Frequency (GHz)

Challenges in scaling up multibeam receivers

- Challenge 1
- Make compact of receiver frontend
- => integrated superconducting circuit
- Challenge 2

LO

Reduction of power consumption at the 4K stage

- Semiconductor-based amplifier: 10 mW =>10 W(/1000 beams)
- => Low power consumption, low noise, broadband CLNA

SIS-mixer-based microwave amplifier

T. Kojima et al., Appl. Phys. Lett. **122**, 072601 (2023).

https://atc.mtk.nao.ac.jp/news/20230320/

\Orchestrating a brighter world **NEC**

Credit: 国立天文台

mixer-based non-reciprocity

S. Masui et al., IEEE Microw. Wirel. Technol. Lett. 33, 1051 (2023).

ムゴ

Josephson oscillator for LO source

A. Kawakami

100 GHz Josephson array oscillator with a detector JJ

Y. Uzawa et al., IEEE Trans. Appl. Supercond. 33, 1500804 (2023).

DC

Plans for the second half of the project

Plans for the second half of the project

Development of cryo-electronics

- construction of standard cell libraries
 - \checkmark low j_c SFQ circuits for 10 mK operation
 - ✓ digital and analog CMOS circuits for 4 K operation
- operation test of functional circuits test of individual circuits
 - demonstration of qubit control/readout
 - □ interface between cryo-electronics
- System-level architecture exploration
 - Develop an evaluation environment of QCP + QCI*
 - e.g. evaluate maximum # of qubits under the constraint of cooling power and required logical error rate for a given hardware configuration
 - Evaluate the impact of core technologies developed in the project
 - Propose future direction of in-refrigerator system architecture
 - * I. Byun et al., Proceedings of ISCA '22, D. Min et al., Proceedings of ISCA '23.

electronics

RT

NEC

Orchestrating a brighter world

System-Level Architecture Exploration

\Orchestrating a brighter world

NEC creates the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential.

Orchestrating a brighter world

