

Moonshot Goal 6: International Symposium July 18, 2023

Quantum-Computing Hardware Based on Nanofiber-Cavity QED

Takao Aoki

Waseda University

JST Moonshot R&D Grant Number JPMJMS2268

Pl's

Strong collaboration in academia, national lab, and industry

Toward Fault-Tolerant Universal Quantum Computing

Various Platforms for Quantum Computing

D. Bluvstein et al., Nature 604, 451 (2022)

N. Lee et al, Appl. Phys. Lett. 116, 162106 (2020)

Promising Solution for Scaling Up

Distributed Quantum Computing

Superconducting Circuits

https://www.eurekalert.org/news-releases/758461

• "Cryo" cables are needed for direct (microwave) connection

- Build a quantum network by connecting many small-scale QCs (QPUs)
- The whole network functions as a largescale QC

C. Monroe and J. Kim, Science 339, 1164 (2013)

- Directly interfaced with optical photon
- Technical challenges for high efficiency

Cavity QED as a Quantum Computing Platform

- Hybrid system with atom(s) and photons
- Ideal interface between atomic and photonic qubits
- Building blocks for QC based on cQED have been demonstrated with free-space cavities

Cavity QED as a Quantum Computing Platform

T. Pellizzari et al., PRL 75, 3788 (1995)

By placing many atoms in a cavity with each atom strongly coupled to the cavity, and

by individually addressing each atom, the system can function as a quantum computer.

Difficult to achieve with conventional, free-space cavities

J. R. Buck, Ph.D. thesis, Caltech (2003)

Cavity QED as a Quantum Computing Platform

Furthermore, by <u>connecting multiple cavities with low losses</u>, distributed quantum computing can be realized.

Difficult to achieve with conventional, free-space cavities

J. R. Buck, Ph.D. thesis, Caltech (2003)

This Project: Nanofiber Cavity QED

- All-fiber cavity QED system with many, individually addressable atoms

Each unit is a middle-scale quantum computer (QPU)
Many units are connected by optical fibers

Large-Scale Distributed Quantum Computing

QPU Based on Nanofiber CQED

One-Qubit Gates

Two-photon Raman transition driven by Ω_1, Ω_2

QPU Based on Nanofiber CQED

- Two-Qubit Gates (and N-Qubit Gates)
- "Duan-Kimble" scheme

- Phase flip conditioned on atomic state
- Atom-photon, atom-atom (local/remote), photon-photon gates
- High fidelities with photon detection
- Dispersive scheme

- Atom-atom interaction via exchange of photon
- Parallel operation with multi-color driving

- L. -M. Duan et al., PRA 72, 03233 (2005)
- A. Reiserer et al., Nature 508, 237 (2014)
- T. G. Tiecke et al., Nature 508, 241 (2014)
- B. Hacker et al., Nature 536, 193 (2016)
- S. Welte *et al.*, PRX **8**, 011018 (2018)
- S. Daiss *et al.*, Science **371**, 614 (2021)

C. -L. Hung *et al.*, PNAS **113**, 4336 (2016) A. Periwal *et al.*, Nature **600**, 630 (2021)

Distributed QC With Nanofiber CQED

PCT/JP2021/25783

This Project: Nanofiber Cavity QED

- All-fiber cavity QED system with many, individually addressable atoms

Each unit is a middle-scale quantum computer (QPU)Many units are connected by optical fibers

Large-Scale Distributed Quantum Computing

Our Technologies

Nanofiber Cavity QED System

"Nanofiber"

Trapping an Atom

Far-Off-Resonance Optical Trapping (FORT) of single atom using evanescent field

Nanofiber Cavity QED System

Nanofiber Cavity QED System

Connecting Two Nanofiber CQED Systems

S. Kato et al., Nature Commun. 10, 1160 (2019)

D. White et al., PRL 122, 253603 (2019)

Eigenstates

$$\zeta = \sqrt{g^2 + 2v^2}$$

Bright modes

$$|\mathrm{BS1}\rangle \propto g|\mathrm{A}_1\rangle + g|\mathrm{A}_2\rangle + \zeta|\mathrm{C}_1\rangle + \zeta|\mathrm{C}_2\rangle + 2v|\mathrm{F}\rangle$$

$$|\mathrm{BS2}\rangle \propto g|\mathrm{A}_1\rangle + g|\mathrm{A}_2\rangle - \zeta|\mathrm{C}_1\rangle - \zeta|\mathrm{C}_2\rangle + 2v|\mathrm{F}\rangle$$

Fiber-dark modes

$$\begin{split} |FD1\rangle \propto |A_1\rangle - |A_2\rangle + |C_1\rangle - |C_2\rangle \\ |FD1\rangle \propto |A_1\rangle - |A_2\rangle - |C_1\rangle + |C_2\rangle \end{split}$$

Cavity-dark mode

$$|\mathrm{CD}\rangle \propto v |\mathrm{A}_1\rangle + v |\mathrm{A}_2\rangle - g |\mathrm{F}\rangle$$

Observation of Normal Modes

S. Kato et al., Nature Commun. 10, 1160 (2019)

Observation of Normal Modes

D. White *et al.*, PRL 122, 253603 (2019)

Connecting Two Nanofiber CQED Systems

S. Kato et al., Nature Commun. 10, 1160 (2019)

D. White et al., PRL 122, 253603 (2019)

Distributed QC With Nanofiber CQED

PCT/JP2021/25783

Trapping Many "Individually Addressable" Atoms

Far-Off-Resonance Optical Trapping (FORT) of single atoms using evanescent field

Trapping Many "Individually Addressable" Atoms

Optical Tweezers

D. Barredo et al., Science 354, 1021 (2016)

M. Endres et al., Science 354, 1024 (2016)

B					
53 moves	47 moves	35 moves	41 moves	43 moves	47 moves
					15 pm

1				ri, kirolo			-		· · · · · ·					-		والاختيار	-							Tobu
1	1	133	10		44							- 44									new - a			
ł	100	<i>ar</i>													-	_	-							
			1100												-	_								
i,		110		***						****	***				****									
*	****	1	***					****	****	****			1											
	****						****	****	****		****					181								
2																								
		- 22					**			**		••	**		**		**	**	**	. * *				
							**		. 4.4			8.8				**	**							
6.7	**	1.4	- 8		18	1.8	**	44	4.8		**	**	1.4		1.8		**	**	**				8.9	**
	****			-																				
						*********											********							
						*********					*********													
1																								
-	-									-														-
-																						_	_	_

Trapping Many "Individually Addressable" Atoms

QPU Prototype Under Construction

QPU Prototype Under Construction

Single-atom trapping with optical tweezer

Fluorescence imaging of trapped single atom

Observation of cavity-enhanced resonance fluorescence

Bimodal distribution

(Single-atom trapping with collisional blockade)

Creation of optical tweezer array with SLM

Theory for QC With Cavity QED

H. Goto et al., Phys. Rev. A 99, 053843 (2019)

"Figure of merit for single-photon generation based on cavity quantum electrodynamics"

$$P_S^{\max}(\tau \to \infty) = \frac{\kappa_{\text{ex}}}{\kappa_{\text{total}}} \frac{C}{1+C}$$

Extraction efficiency Internal efficiency (Escape efficiency)

Theory for QC With Cavity QED

H. Goto et al., Phys. Rev. A 99, 053843 (2019)

"Figure of merit for single-photon generation based on cavity quantum electrodynamics"

T. Utsugi *et al.*, Phys. Rev. A **106**, 023712 (2022) "Gaussian-wave-packet model for single-photon generation based on cavity quantum electrodynamics under adiabatic and nonadiabatic conditions"

Theory for QC With Cavity QED

R. Asaoka et al., CLEO-PR 2020, "Suitable fault-tolerant schemes for cavity-QED based quantum computation"

Threshold for FTQC with topological 3d cluster states

 $C_{\rm i} \sim \mathcal{O}(10)$

R. Asaoka *et al.*, Phys. Rev. A **104**, 043702 (2021) "*Requirements for fault-tolerant quantum computation with cavity-QED-based atom-atom gates mediated by a photon with a finite pulse length*"

T. Utsugi *et al.*, arXiv:2211.04151, "Optimal cavity design for minimizing errors in cavity-QED-based atom-photon entangling gates with finite temporal duration"

Internal Cooperativity

Losses in Nanofiber Cavity

- Losses at tapered region
- Losses at FBGs

Fabrication of Low-Loss Tapers

R. Nagai and T. Aoki, Opt. Express 23, 28427 (2014)

Fabrication of Low-Loss Tapers

S. K. Ruddell et al., Opt. Lett. 45, 4875 (2020)

- Real-time monitoring of cavity finesse by means of repetitive ring-down measurement
- Real-time monitoring of nanofiber diameter by means of beat spectrogram measurement

Fabrication of Low-Loss Tapers

S. K. Ruddell et al., Opt. Lett. 45, 4875 (2020)

- Real-time monitoring of cavity finesse by means of repetitive ring-down measurement
- Real-time monitoring of nanofiber diameter by means of beat spectrogram measurement

Taper losses at $\, r \lesssim 500 \, {
m nm}$ can be fitted with

$$\alpha(r) = \alpha_0 + \left(\frac{r_0}{r}\right)^{\tau}$$

$$\begin{cases} \alpha_0 = 0.028\% \\ r_0 = 49 \text{ nm} \\ \tau = 5.8 \end{cases}$$

$$\alpha \sim 0.03\% \text{ at } r \gtrsim 250 \text{ nm}$$

Fabrication of Low-Loss FBG's

Fabrication of Low-Loss FBG's

S. Kato and T. Aoki, Opt. Lett. 47, 5000 (2022)

Transmission Spectra

 $\tau = 187 \text{ ns}$ $\Delta_{\text{FWHM}}/(2\pi) = 853.5 \text{ kHz}$ L = 14.65 mm $\Delta_{\text{FSR}}/(2\pi) = 10.242 \text{ GHz}$ $\mathcal{F} = 12,000$ $(\alpha_{\text{M}} < 0.026\%)$

Losses in Nanofiber Cavity

Projected cooperativity $\ C>100$

Other Technologies Being Developed

Summary

Cavity QED is a hybrid system with atoms and photons.

Nanofiber cavity QED is a promising platform for realizing distributed quantum computing.

We have developed technologies for fabricating ultra-low-loss nanofiber cavities and for constructing nanofiber cavity QED systems.

We have succeeded in coupling single atoms to the nanofiber cavity by using optical tweezers.

Prospects

We will demonstrate a proof-of-concept for a nanofiber cavity QED quantum computer hardware.

We will develop technologies for distributed quantum computing based on nanofiber cavity QED.

We will also develop scaling-up technologies, quantum error correction theory, and stable light source systems.

Furthermore, we will promote the social implementation of our technologies.

