ムーンショットプロジェクト目標2の第2回公開講演会 2022-0326 14:50-15:05 (ゲスト講演)

生物や生命現象を理解するために、 数理モデルは役立つだろうか?

巌佐 庸

(九大名誉教授、長野大学学長特別補佐)

本日の予定

1. 生物を理解するための様々な数理

動物行動: 最適化、ゲーム
生態: 動的最適化
発生の形態形成: 微分幾何、ネットワーク理論
発がん: 確率過程

2. よい数理モデルとは何だろうか?

生物系と非生物系(物理系) とは何が違うのか?

European starting

経験による先験分布の更新

ベイズ型の決定理論

Iwasa et al. (1981) Am. Nat.

ゲーム

利害の異なる個体がそれぞれに 自らの利益を追求する

Checker spot butterfly *Euphydrias editha*

昆虫の羽化季節に関するゲーム

10.0 µaµb is large (a) 8.0 0.3 x m(t) 6.0 NUMBER OF INDIVIDUALS 4.0 g(t) 2.0 f(t) 0 µ_aµ_b is small 10.0 (b) 0.3 x m(t) 8.0 6.0 g(t) 4.0 ts 2.0 f(t) 0 30 60 70 80 90 100 10 20 40 50 0 DAY NUMBER (t)

EMERGENCE PATTERNS IN MALE BUTTERFLIES

Emergence of male butterflies as a game.

Iwasa et al. (1983) TPB

生涯繁殖成功を最大にする植物の成長スケジュール 一年生 vs 多年生

OPTIMAL GROWTH SCHEDULE OF A PERENNIAL PLANT

THE AMERICAN NATURALIST

ポントリャーギンの最大原理:年内のスケジュール

$$H = \lambda_F u (aF + b) + \lambda_S [g(F) - u(aF + b)]$$
$$\frac{d\lambda_F}{dt} = -\frac{\partial H}{\partial F} \qquad \frac{d\lambda_S}{dt} = -\frac{\partial H}{\partial S} \qquad \max_{0 \le u(t) \le T} H$$

ダイナミックプログラミング:年間のアロケーション $V[S] = \max_{\sigma \leq R \leq S} \left\{ R + \sigma V \left[\psi (\gamma (S - R)) \right] \right\}$

FIG. 7.—The ratio of the size of a plant just established using stored material to the maximum plant size, measured for seven deciduous perennials in northern Japan (from Yokoi 1966). A, B, Fauria crista-galli; C, Aconitum chinense; D, Miscanthus sinensis; E, Miscanthus sacchariftorus. The curve is the ratio F_1/F_2 predicted by the model with f = 0.07 and $\sigma \gamma = 0.33$.

Iwasa & Cohen (1989) Am Nat

発生と形態形成

Zebrafish come mosaic Limb bud formation

St. 25

Tohya, Mochizuki and Iwasa (1999)

Morishita and Iwasa (2008)

微分幾何学の概念

テンソル の成分:

ニワトリ胚発生の前脳発生での組織変形 メカノバイオロジーへ

tunicate (sea squirt ascidian)

a chordate animal

Networks in current biology are very complex.

Gene regulatory network for embryogenesis of ascidian. Imai et al. (2006)

Gene regulatory network specifying cell fates

全ての細胞が同じ遺伝子のセットをもつ 同じ微分方程式にしたがう

6つの異なる組織に分化する (上皮,脳,筋肉,内胚葉、間充織 etc.) 異なる最終状態に至る

少数の重要な遺伝子があり

それらの発現量を追跡すると、 どの組織の細胞に分化するか予測できる

それらの遺伝子の実験操作によって、 全ての組織の細胞を作り出せる

遺伝子の相互作用の有効グラフにおける フィードバック頂点集合の遺伝子

それらを除去すると、残った有向グラフにはサイクルがない

Genes in the minimum Feedback Vertex Set

Multinucleate cell

A multinucleate cell shows progress of the dynamics

Network analysis can be performed without complication by cell-cell interaction or spatial configuration.

Morpholino antisense nucleotides against *Foxd*, *Ngn*, and *Zici*, and mRNA for *Foxa*

-Manipulation of the FVS genes in Single-cell system-

Fgf9	Foxa	Foxd	Ngn	Zic	
Ļ	Ļ	Ļ	Ļ	1	Brain
\frown				<u> </u>	
1	Ļ	Ļ	Ļ	↓	Endoderm
$\left(\uparrow\right)$	Ļ	Ļ	Ļ		Endoderm
(>					
↓	1	Ļ	Ļ	J	Mesenchyme
<u>(</u>)	$\left[\uparrow \right]$	Ļ	Ļ	V	Mesenchyme
(- <u>-</u> -)	()		\square		
J	•	•	Î	•	Nerve cord
Î	•	Ļ	Î	•	Nerve cord
•	Î	•	Î	•	Nerve cord
•	•	Ļ	Î	ſ	Nerve cord
		Ļ	$\left[\begin{array}{c} \uparrow \end{array} \right]$	1	Nerve cord
()	()		()		
		T A	↓ ↓	•	Notochord
•	+	T A	↓	ſ	Notochord
T	↓	T A	Ť	Î	Notochord
	T	T A	Î	ſ	Notochord
Î	•	Î	•	↓	Notochord & Endoderm
•	Î	Î	•	•	Notochord & Endoderm
•	•	Î	Î	•	Notochord & Endoderm
	•	Î	1	Î	Notochord & Endoderm
		L1 J		1	Notochord & Endoderm

Multi-gene activations induces one of resultant cell-types of single-gene activations.

Necessary activation for the focal cell fate.

do not matter.

⇒Hierarchy Priority order among FVS genes 遺伝子の相互作用の有効グラフにおいて フィードバック頂点集合の遺伝子は

それらの発現量を追跡すると、 どの組織の細胞に分化するか予測できる

それらの遺伝子の実験操作によって、 全ての組織の細胞を作り出せる。

この理論は、非線形の微分方程式系の定常状態 (一般にωリミット集合)に関するもの

微分方程式の変数の依存関係だけできまる 符号も、大きさも、関数形にもよらない

発ガンと白血病のモデル

CML 細胞はフィラデルフィア染色体をもつ

Imatinib is an inhibitor of BCR-ABL

CMLと診断された時点で 薬剤耐性の細胞(突然変異をもつ) が作られていた確率は?

time

診断時点ですでに耐性細胞が存在する確 <u>率</u>

$$P = 1 - \exp\left[-\frac{MuF}{1 - d/r}\right]$$

where $F = \int_{0}^{1} \frac{1 - b/a}{1 - (b/a)y^{(a-b)/(r-d)}} dy$

M: detection size *u*: 突然変異率 *r*, *d*: 細胞分裂/死亡率 (感受性細胞) *a*, *b*:細胞分裂/死亡率 (耐性細胞)

シミュレーションは公式に良く合う

生物・生命現象を理解するために 役立つ数学は 微分方程式、偏微分方程式 **()** 今でも王道

それらに加えて、 確率過程、動的最適化、ゲーム、

ここ10年ほどは 微分幾何学、ネットワークなど

さまざまな数学が生物を理解する上に 役立つことが明らかになってきた

2. どういうモデルが良いモデルか?

複雑な現実を計算機の中に 復元することを目指してはいけない

モデルを作る目的を明確にし つよく影響するプロセスだけを選ぶ 考えうる限りもっとも単純なモデルを

1つモデルで 多数の問いに答えられることを 目指してはいけない

知りたいことを決めるごとに ベストの簡単なモデルをつくる

ご清聴ありがとうございました