

Moonshot International Symposium April 23,2021 @ on line

Development of Quantum Interfaces for Building Quantum Computer Networks

PM: Hideo Kosaka Yokohama National University, Japan

CONTENTS

Research field
 Technology Roadmap
 Research Concept
 Required Functions
 Target Performance

Fault-tolerant Universal Quantum Computer

Quantum Sensor Network

Quantum Internet

Blind Quantum Computing

Network

Interface
memory

Hardware
Superconductor
Trapped Ions
Silicon QDs

Photons

Software •Error correction •Fault-tolerance

Material Growth, Nano Device Fabrication, Quantum Theory

Quantum Interface

Technology Roadmap in Q. Network

Based on the "Quantum Technology and Innovation Strategy" from Japanese Cabinet Office

Quantum Computer Network • Quantum media converter

- Interface Quantum Computer to Network
- Distributed Quantum Computer could be built
- NV center in diamond under a zero magnetic field
 - Interface optical & microwave photons with memory
 - Purification and Fault-tolerance would be expected

Promising Qubits

Diamond Qubits show high performance in Speed, Fidelity and Memory no less than other qubits

Diamond NV Center Quantum Interface

Various Spins in an NV center are used as Q. Memory, Q. Processor, and Q. Buffer

Diamond can be an Ultra-Compact Quantum Computer or Sensor

Quantum Manipulation, Memory, Readout and those Combinations in Diamond Spin Qubits under a Zero magnetic field

Functions	Requirements	Status
Quantum Manipulation Fidelity	> 99.9%	<mark>99.6%</mark>
Quantum Manipulation Time	< 1ns	<mark>5 ns</mark>
Quantum Memory Time	> 1 min.	<mark>1 s</mark>
Single-Shot Readout Fidelity	> 99.9%	<mark>99.7%</mark>
Electron-Photon Entangl. Generation	> 99%	90%
Photon-to-Spin Q. State Transfer	> 99%	90%
Q. Error Correction \Rightarrow Q. Coding	> 99%	80%
Complete Bell measurement	> 99%	85 %
Individually addressable Q. Memory	> 100	10

Quantum Teleportation Transfer

MOONSHO'

We can Transfer and Store Quantum State from an Optical Photon to a Quantum Memory

90% ⇒ 99% **Frror Correction** Q. Memory Q. Manipulation Nature Photonics, 10, 507(2016) Q. Communication Communications Physics 2, 74 (2019)

We will be able to Transfer and Store Quantum State from a Microwave Photon to a Quantum Memory.

Research Trends in Quantum Interfaces

Combination of Diamond, Superconducting technology with Photonic Integration enables Hybrid Quantum Interface

Kosaka Project Members

PM: Hideo Kosaka **YNU** Institute of Advanced Yokohama National Univ. & Ouantum Information Research Center

NU

OST

NIMS

33 Japan's Best Nanotechnology Researchers!

Diamond Q. Memory

➤ H. Kosaka (YNU) Diamond Q. Memory H. Kato, T. Makino (AIST) Diamond Q. Structure ➤ T. Teraji (NIMS) Diamond Q. Crystal ≻ S. Onoda (QST) **Diamond Color Center** Members: ➤ Y. Sekiguchi(YNU) ➤ H. Kurokawa(YNU) ➤ K. Kojima(AIST) ➤ X. Shen(AIST) ➤ M. Ogura(AIST) ➤ Y. Kato(AIST) 🔁 AIST \succ H. Yoshioka(AIST) \succ K. Masumoto(AIST)

Opto-Mech. Crystal

➤ S. Iwamoto (Tokyo) Photonic Crystal Cavity

► T. Baba (YNU) Photonic Integrated Circuit

➤ M. Nomura (Tokyo) Phononic Crystal Cavity

Members:

- ➤ Y. Ota(Tokyo U.)
- M. Nishioka(Tokyo U.)
- ➤ S. Ishida(Tokyo U.)
- \succ S. Hachuda(YNU)
- ≻ T. Tamanuki(YNU)

東京大学

OKOHAMA National Universi

Piezo MW Resonator

H. Kosaka (YNU) Piezo-Microwave Cavity ► N. Yoshikawa (YNU) **Qubit Control Integrated Circuit** Members: R. Sasaki(Riken) ≻ H. Terai(NICT) K. Tanabe(Kyoto U.) ≻ K. Inomata(AIST) ➤ H. Yamanashi(YNU) 京都大学 N. Takeuchi(AIST/YNU) \succ A. Christopher(YNU) ➤ O. Chen (TCU) Y. Sekiguchi(YNU) > H. Kurokawa(YNU)

15

Collaboration with Yasu Nakamura ERATO and Tsuyoshi Yamamoto MS

Summary

Diamond Qubits show high performance in Speed, Fidelity and Memory no less than other qubits

Combination of Diamond, Superconducting technology with Photonic Integration enables Hybrid Quantum Interface

33 Japan's Best Nanotechnology Researchers!