

Development of scalable Silicon quantum computer technology

Project manager

(selected in 2022)

TARUCHA Seigo

RIKEN Center for Emergent Matter Science and Quantum computing

Leader's institution

RIKFN

R&D institutions

RIKEN The University of Osaka The University of Tokyo Kobe University AIST

Summary of the project

This project aims to develop scalable multi-qubit devices toward realization of Silicon quantum computer. We will use sparse integration and medium-distance quantum coupling to implement a unit structure of gubits and scale up the gubit system by integrating the unit structures. Based on this method we will develop technology bases appropriate to implement large-scale quantum computers by 2030, and expand them in cooperation with the semiconductor industry to realize universal quantum computers by 2050.

Milestone by 2030

We establish technology bases for fabricating multi-gubit devices toward development of large-scale quantum computers in cooperation with semiconductor industries. In parallel, we perform characterization and high-fidelity quantum operation of the multi-gubit devices. development of quantum channels suitable for connecting distant qubits,

and production of isotopically enriched silicon/silicongermanium (Si/SiGe) substrate. and in addition, demonstration of the principle of quantum error correction.

Figure 1 Qubit transfer channel.

Milestone by 2025

We use high-quality substrate of Si/SiGe to establish fabrication technologies for implementing multi-gubit devices with a onedimensional gubit array as a fundamental structure, and use them to construct a prototype of small- to middle-scale quantum computers. In addition, we inspect new principles for quantum gate circuits constructed by electron wave packets as propagating qubits.

Figure 2 One-dimensional qubit array (left); Quantum gate circuit with electron wave packets as qubits (right).

Project structure

Seigo Tarucha, Project Manager (RIKEN)

Development of scalable fault-tolerant Si quantum bit devices Takashi Nakajima, RIKEN Takuji Miki, Kobe University

Development of middle-distance quantum link Takafumi Fujita, The University of Osaka

Development of isotopically controlled Si/SiGe substrate technology Satoru Mivamoto, AIST

Development of electron wave-packet qubits with new principle Michihisa Yamamoto, RIKEN, The University of Tokyo Shintaro Takada, The University of Osaka

Figure 3 Silicon qubit device and the device operation setup: control electronics (left) and a dilution refrigerator (right).

