

Goal6 Realization of a fault-tolerant universal quantum computer that will revolutionize economy, industry, and security by 2050. Fault-tolerant Quantum Computing with Photonically Interconnected Ion Traps

Project manager

(selected in 2020)

TAKAHASHI Hiroki

Assistant Professor, OIST

Leader's institution OIST

R&D institutions

Kyoto Univ., Kyushu Univ., NICT, OIST, Osaka Univ., QST, The Univ. of Tokyo

Summary of the project

This project aims to develop ion trap devices that facilitate building large-scale quantum systems beyond the limitations posed by conventional approaches. The new approach is based on a novel idea of photonically interconnecting multiple ion traps. Thereby we aim to realize large-scale quantum computing by 2050.


Milestone by year 2030

We aim to realize a fault-tolerant photonically interconnected quantum computing system by photonically connecting ion trap modules.

Milestone by year 2025

We develop ion trap modules that enable the expansion of the number of qubits, demonstrating their scalability to the level required for faulttolerance.

Project structure Photonic interconnects Hiroki Takshashi, OIST Alto Osada, Osaka Univ.

NICT: National Institute of Information and Communications Technology OIST: Okinawa Institute of Science and Technology Graduate University QST: National Institutes for Quantum Science and Technology

