Goal6 Realization of a fault-tolerant universal quantum computer that will revolutionize economy, industry, and security by 2050.

Development of scalable Silicon quantum computer technology

R&D Item

Here begins our new MIRAI

1. Development of scalable fault-tolerant Si qubit devices

Progress until FY2024

1. Outline of the project

This research project aims to develop scalable silicon (Si) qubit technologies suitable for fault-tolerant quantum computing. Our focus is to develop high-fidelity gubit control, demonstrated in small-scale systems, in a scalable architecture considering gubit layout, device fabrication process, and control signal integrity for fault tolerance. We pursue the realization of truly scalable Si qubit devices by establishing these core technologies.

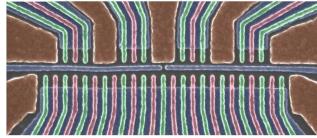


Figure 1. Electron micrograph (false color) of a 12-gubit device fabricated on a Si/SiGe quantum well substrate.

In this project, we fabricate Si/SiGe quantum well qubit devices, which offer excellent uniformity across the sample and enable electrical control of qubit parameters (Figure 1). With the help of the industrial manufacturing processes, we aim to provide a blueprint for large-scale fault-tolerant quantum computing.

2. Outcome so far

- 1. Preparation of a 12-qubit device and an experimental
- 2. Demonstration of single-qubit gate fidelity exceeding 99.99%

- 3. Analysis of error mechanisms in two-qubit controlledphase gate and development of calibration methods
- 4. Demonstration of fast, high-fidelity gubit readout and active reset via feedback, essential for quantum error correction
- 5. Development of pulse signal generators and throughsilicon via (TSV) processes for signal transmission suitable for large-scale qubit control

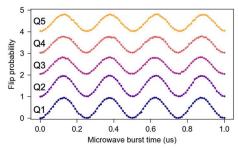


Figure 2. Coherent Rabi oscillations driven by microwave pulses resonant with each of the five gubits.

We analyzed single- and two-qubit gate errors via gate set tomography and randomized benchmarking. By optimizing control pulse envelopes, we achieved control fidelities competing with the highest reported values so far (Achievements 2 and 3). In addition, we detected and analyzed noise correlations between qubits that help to understand error mechanisms in spin gubits.

We also demonstrated high-speed (in 1 microsec) and highfidelity (>99%) gubit readout and bit-flip/reset operations via feedback control-key components of quantum error correction (Achievement 4).

We also developed a pulse signal generator for the precise control of a large number of qubits. To compensate for the degradation of pulse waveforms inside a dilution refrigerator, we implemented an innovative calibration circuit capable of high-resolution waveform shaping and verified its performance through experimental evaluation (Fig. 3(a)). Furthermore, to ensure signal integrity for signal transmission to densely integrated gubits, we developed a through-silicon via (TSV) formation process on a silicon interposer, which enables a wire-bond-free chip packaging structure (Fig. 3(b), Achievement 5).

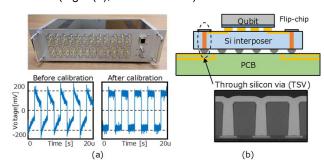


Fig.3 (a) Pulse signal generator, (b) Through silicon via for signal transmission.

All these efforts lead to the development of the new 12gubit devices and experimental setups for conducting highfidelity 12-qubit experiments (Achievement 1).

3. Future plans

We have clarified the technical requirements for highfidelity gubit control and advanced our understanding of error mechanisms. These results will allow us to address emerging challenges in integrated gubit devices, such as distant gubit coupling via spin shuttling and signal integrity with high-density wiring. We then aim to design scalable Si gubit devices optimized for fault-tolerant operation and advance our research toward large-scale quantum computing.

