m Realization of a fault-tolerant universal quantum computer that will revolutionize economy, industry, and security by 2050.
Development of a Scalable, Highly Integrated Quantum Error Collection System
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3. Scalable Classical-Quantum Interface with Optical/Cryo CMOS Integrated Circuits

Progress until FY2024

Realizing a scalable quantum computer is essential to
efficiently transmit huge data communicated between
classical and quantum circuits. This necessitates
reduction of wiring across the room temperature
environment and cryogenic environment. In Item 3, as
shown in Figure 1, we will develop an optical/Cryo CMOS
integrated circuit that operates at the classical-quantum
boundary to realize highly efficient information
transmission. As key technologies, we are developing (a)
through (b) in Figure 1. This year, we (a) proposed a low-
cost qubit control architecture, (b) measured low-
temperature characteristics for optical integrated
circuits, (c) developed PDKs for Cryo CMOS circuits, and
(d) developed design techniques for Cryo CMOS circuits.

(b) Scalable Classical-Quantum Interface
by Photonic/Cryo-CMOS Integrated Circuits
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Figure 1: Overall of Item 3

2. Outcome so far

(a)Quantum control architecture for Cryo environment

We proposed a low-cost qubit circuit architecture
(Figure 2) enabling sufficient gate fidelity with simpler
elements. We also developed design guidelines based on
our ﬁndings
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Figure 2: Low-cost architecture

(b)Low-temperature Measurement of optical integrated
circuits for classical-quantum I/F
Optical integrated circuits

showed room-temperature-

like switching in liquid
nitrogen(Figure3). An
evaluation environment for

liquid helium conditions

Figure 3: Optical switch
characteristics

was also established.

(c) Development of PDK for Cryo CMOS

We developed modeling techniques based on surface
potential theory and machine learning, alongside the
industry-standard BSIM4 model. In particular, we
extended BSIM4 to incorporate forward body bias effect
(Figure 4, left), and demonstrated power optimization
through body bias and voltage scaling in ring oscillator
designs, all without the need for physical prototyping
(Figure 4, right).
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Figure 4: Simulated current characteristics (left) and
application to ring oscillator (right)

(d) Cryo-Integrated Circuit Design Technology

Random telegraph noise (RTN) in transistors was
statistically analyzed using a cryogenic measurement
environment specifically built for this study. The
experimental results indicate that RTN effects are
temporarily suppressed around 100 K; however, they
become markedly more pronounced at ultra-low

temperatures, such as 3.8 K (Figure 5).
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Flgure 5: RTN at cryogenic temperatures

3. Future plans

We will actively consider the integration of each
elemental technology and aim to demonstrate and
estimate the scalability of the proposed system.
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