Here begins our new MIRAI

R&D Item

3. Scalable Classical-Quantum Interface with Optical/Cryo CMOS Integrated Circuits

Progress until FY2024

1. Outline

Realizing a scalable quantum computer is essential to efficiently transmit huge data communicated between classical and quantum circuits. This necessitates reduction of wiring across the room temperature environment and cryogenic environment. In Item 3, as shown in Figure 1, we will develop an optical/Cryo CMOS integrated circuit that operates at the classical-quantum boundary to realize highly efficient information transmission. As key technologies, we are developing (a) through (b) in Figure 1. This year, we (a) proposed a low-cost qubit control architecture, (b) measured low-temperature characteristics for optical integrated circuits, (c) developed PDKs for Cryo CMOS circuits, and (d) developed design techniques for Cryo CMOS circuits.

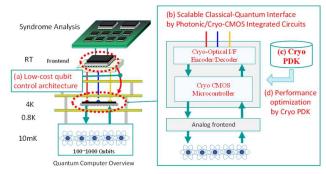


Figure 1: Overall of Item 3

2. Outcome so far

(a)Quantum control architecture for Cryo environment

We proposed a low-cost qubit circuit architecture (Figure 2) enabling sufficient gate fidelity with simpler elements. We also developed design guidelines based on our findings.

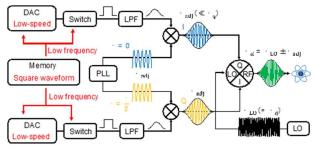


Figure 2: Low-cost architecture

(b)Low-temperature Measurement of optical integrated circuits for classical-quantum I/F

Optical integrated circuits showed room-temperature-like switching in liquid nitrogen(Figure 3). An evaluation environment for liquid helium conditions was also established.

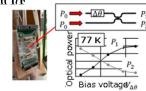
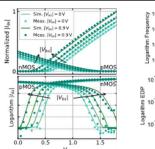



Figure 3: Optical switch characteristics

(c) Development of PDK for Cryo CMOS

We developed modeling techniques based on surface potential theory and machine learning, alongside the industry-standard BSIM4 model. In particular, we extended BSIM4 to incorporate forward body bias effect (Figure 4, left), and demonstrated power optimization through body bias and voltage scaling in ring oscillator designs, all without the need for physical prototyping (Figure 4, right).

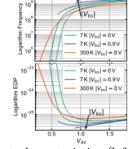


Figure 4: Simulated current characteristics (left) and application to ring oscillator (right)

(d) Cryo-Integrated Circuit Design Technology

Random telegraph noise (RTN) in transistors was statistically analyzed using a cryogenic measurement environment specifically built for this study. The experimental results indicate that RTN effects are temporarily suppressed around 100 K; however, they become markedly more pronounced at ultra-low temperatures, such as 3.8 K (Figure 5).

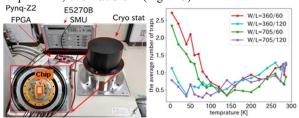


Figure 5: RTN at cryogenic temperatures

3. Future plans

We will actively consider the integration of each elemental technology and aim to demonstrate and estimate the scalability of the proposed system.

