

Apr. 23 2021 Moonshot International Symposium for Goal6

Fault-tolerant Quantum Computing with Photonically Interconnected Ion Traps

Okinawa Institute of Science and Technology Graduate University Hiroki Takahashi

Quantum Mechanics and Atoms

Quantum Mechanics started with studies of simple atoms (e.g. Hydrogen).

Bohr model

E. Schrödinger

- Physics of isolated atoms well understood and in domain of precision science.
- Quantum effects manifested in isolated atoms.

A way to make a quantum computer?

What if we could line up individual atoms one by one?

Each atom works as a qubit!

Ion trapping just does that !

What's ion trap?

- **Ions** → Charged atomic particles.
- Why ions? → Motion can be controlled electrically.
- **Trapped in vacuum** → Isolated from environment.
- Laser cooling \rightarrow Cooled down to μ K \sim mK.

Applying **voltages to electrodes**, multiple ions are trapped and **linearly aligned** with almost **no residual motion**.

Principles of ion trap QIP

- Qubit-qubit interaction via collective phonons.
- Two-qubit entangling gate:
 - Cirac-Zoller gate
 - Mølmer–Sørensen gate
- Entanglement between an arbitrary pair.
 - \rightarrow All-to-all connection.

State of the art

- Basic elements demonstrated with high fidelities:
 - Single qubit gate · · F=99.9999 %
 - Two qubit gate ··· F= 99.9 %
 - SPAM ··· F> 99.9 %
- Long coherence times:
 - T₂ > 1hr (Nat Commun. 12, 233 (2021)).
- Cloud-based services provided by IonQ and Honeywell.
- Current issue : How to increase # of qubits.
 - 13 ions (arXiv: 2009.11482(2020)), 20 ions (PRX 8, 021012(2018)).
 - What's the bottleneck?

http://iontrap.umd.edu/wpcontent/uploads/2017/06/cropped-50ionsblur-3.jpg

TIQI Group, University of Maryland

Q. Can we increase the number of ions in a single trap indefinitely?

A. No. There's a practical limit. 50-100 ions?

Issues with increasing number of ions:

- 1. Trap becomes shallower.
 - → Decreasing trap freq.: $\omega \approx 0.73 N^{-0.87}$
 - → Slow gates, motional heating, trap instability.
- Number of sidbands (=3N) increases.
 Crowding in freq. space.
 → Erroneous cross talks between sidebands.

- Increasing ions in a single trap does not work in a long run.
- A technology to **connect multiple ion traps** is necessary.

Monroe & Kim, Science **339**, 1164 (2013).

Design concept

Photonically interconnected ion trap modules

- Interconnecting ion trap modules with photons.
 → Scalability beyond a single trap.
- 2. Ion trap modules with **novel functionalities**. \rightarrow Exploiting **optical MW** phononic DoE of
 - → Exploiting **optical**, **MW**, **phononic** DoF of ions.

Development of the ion trap module

1: Photonic interconnects of ion traps

•

- Improve the efficiency of photonic interconnects via **cavity QED**.
 - **Strong coupling** between an ion and a photon (PRL 124 013602).
- Integrating micro-optical cavities in a linear trap.
- Remote entanglement rate >10kHz (2 orders of mag. improvement)

2: Ion traps using superconducting MW circuits

- Direct MW drive of hyperfine qubits, eliminating spontaneous emissions.
- Superconducting MW resonators generates strong fields with low input.
 - → High-fidelity fast quantum logic
 10 times faster w/ 1/1000 input power.
- High frequency phonons
 - \rightarrow Speed up cooling and shuttling
- Ultra-low vibration cryostat.
- High freq. + Cryo → Low heating rate

Kenji Toyoda (Osaka U.)

• Utilizing continuous variables in harmonic oscillators for error correction.

\rightarrow Bosonic encoding

- Quantum control of multiple collective phonon modes
 - Beam splitter interaction between the modes.
 - Nonlinearity by two-level system.
 - Squeezed states + BS → cluster states.
 - Superposition of squeezed states
 → GKP states.

4-1: Fabrication & characterization of high-performance ion traps

Kazuhiro Hayasaka (NICT)

- Fabrication, testing and supply of high-performance ion traps .
- Planar as well as 3D ion traps by microfabrication.
- Supplying ion traps specific for each sub-projects:
 - Ion traps for photonic interconnects (OIST)
 - Superconducting ion traps (U. Tokyo)
 - Ion traps for phonon engineering (Osaka U.)
- Supplying ion traps to the community.
- International collaboration:
 - Planar traps: C. Ospelkaus (Hannover)
 - 3D traps: T. Mehlstaeubler (PTB)

4-2: R&D for cloud quantum computing

Kenji Toyoda (Osaka U.)

Specs for ion trap cloud computing

<u>prototype</u> • ¹⁷¹Yb⁺

- Hyperfine qubits (infinite T₁)
- Long coherence times w/ Zeeman insensitive qubits
- 4-10 ions
- micro- 3D trap by NICT
- Middleware/Software (Fast optimal pulse modulation, cloud connection)
- Fidelity target: 0.99 0.995

<u>Aims</u>

- Preparation for the future social/commercial implementation.
- Education use: "Remote lab"

<u>Underlying technologies @Osaka</u> Ca+ 4-qubit collective gate F=0.96 [1] Ca+ 2-qubit individual access, analog sim.[2] Ca+ 4-qubit individual access, analog sim.[3] Ca+ 10-qubit trapping [unpublished]

[1] A. Noguchi, S. Haze, K. Toyoda and S.
Urabe, *Phys. Rev. Lett.* **108**, 060503 (2012).
[2] K. Toyoda, R. Hiji, A. Noguchi and S.
Urabe, *Nature* **527**, 74 (2015).
[3] M. Tamura, T. Mukaiyama and K. Toyoda, *Phys. Rev. Lett.* **124**, 200501 (2020).

Timeline

Thank you!