

JR東日本グループ経営ビジョン「変革2027」

エネルギーに関する取組みの全体像

つくる(創エネ)

- ・ 火力発電所の高効率化
- ・水力発電所の着実な維持運用

・再生可能エネルギーの導入推進

太陽光

風力

木質バイオマス

バイオガス

自営電力・再生可能エネルギー の供給

送る

・自営電力網の送電効率向上

ためる(蓄エネ(蓄電・蓄熱))

超電導フライホイール 電力貯蔵装置 実証実験

エネルギーの多様化

·燃料電池試験車両開発

FV-E991系

使う(省エネ)

・省エネ車両

E235系

・「エコステ」

列車運行・駅・オフィスビル などへ

高輪ゲートウェイ駅(太陽光パネル)

・環境に配慮したオフィスビル

JR新宿ミライナタワー

・FCバス、FCV導入

業務用自動車

エネルギーに関する取組みの全体像(つくる)

つくる (創エネ)

- ・火力発電所の高効率化
- ・ 水力発電所の着実な維持運用

火力

水力

・再生可能エネルギーの導入推進

太陽光

風力

地熱

木質バイオマス

バイオガス

自営電力・再生エネルギーの供給

送る

ためる

つくる (創エネ)

自営電力・再生エネルギーの供給

自営電力網の送電効率化向上

列車運行・駅・オフィスビルなどへ

使う(省エネ)

エネルギーの多様化

送る

ためる

使う(省エネ)

列車運行・駅・オフィスビルなどへ

・省エネ車両

E235系

「エコステ」

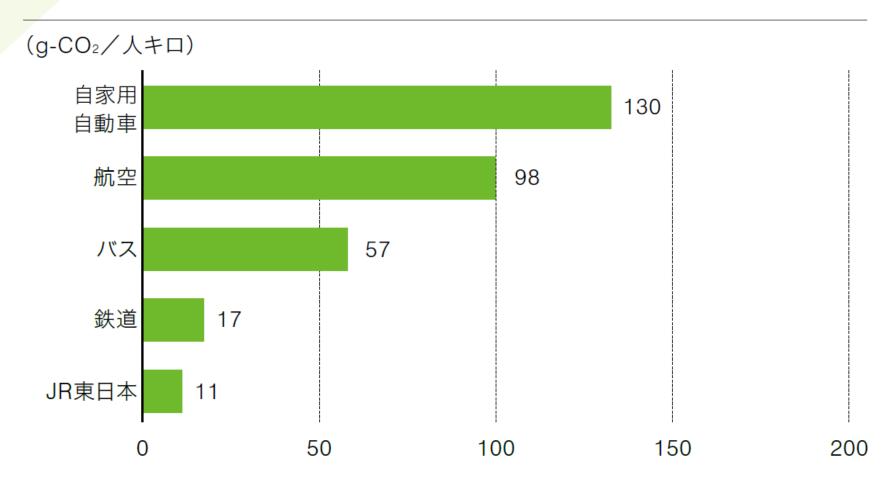
高輪ゲートウェイ駅(太陽光パネル)

JR新宿ミライナタワー

エネルギーの多様化

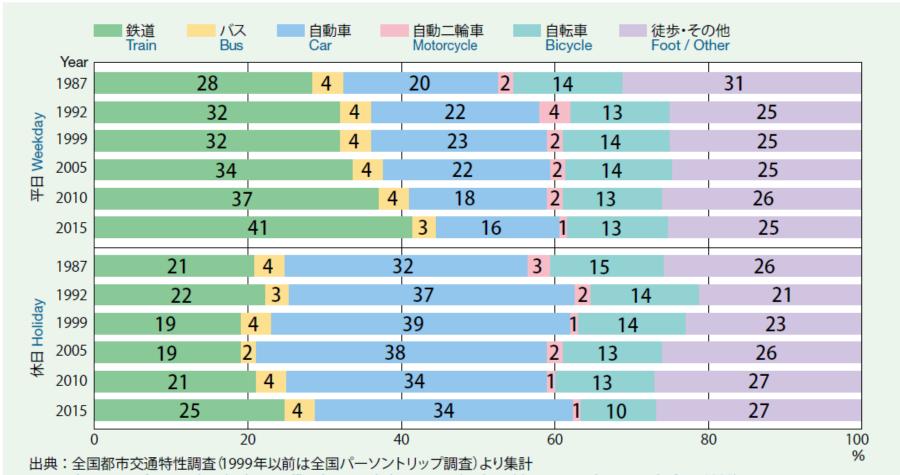
· 燃料電池試験車両開発

• FCバス、FCV導入



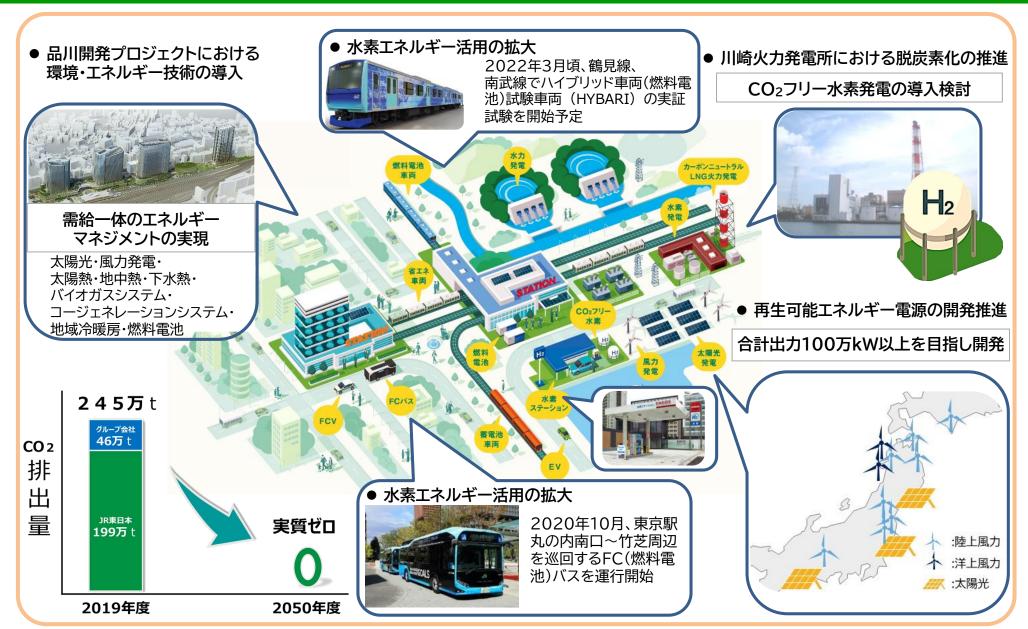
バス

業務用自動車


輸送量当たりのCO2排出量(旅客)(2019年度)

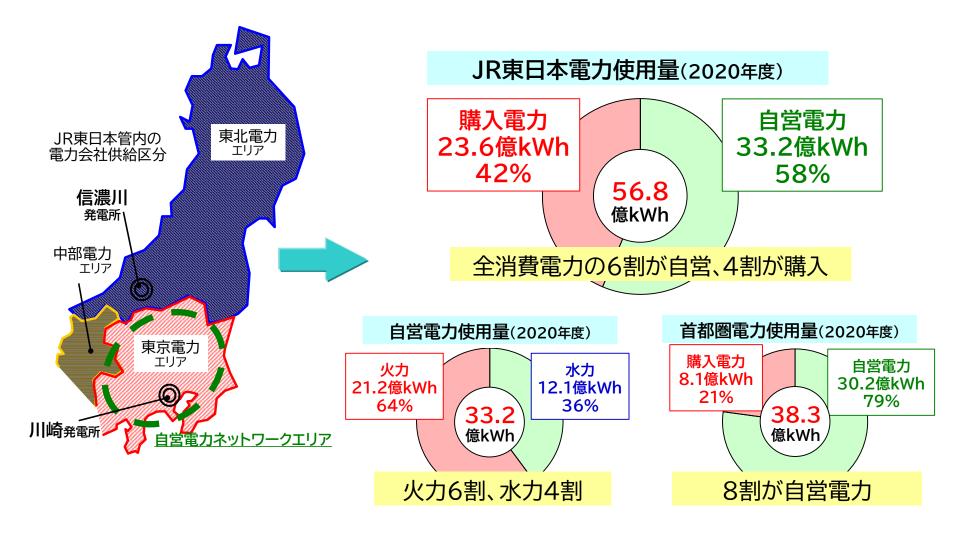
出典: 国土交通省ホームページを加工して作成

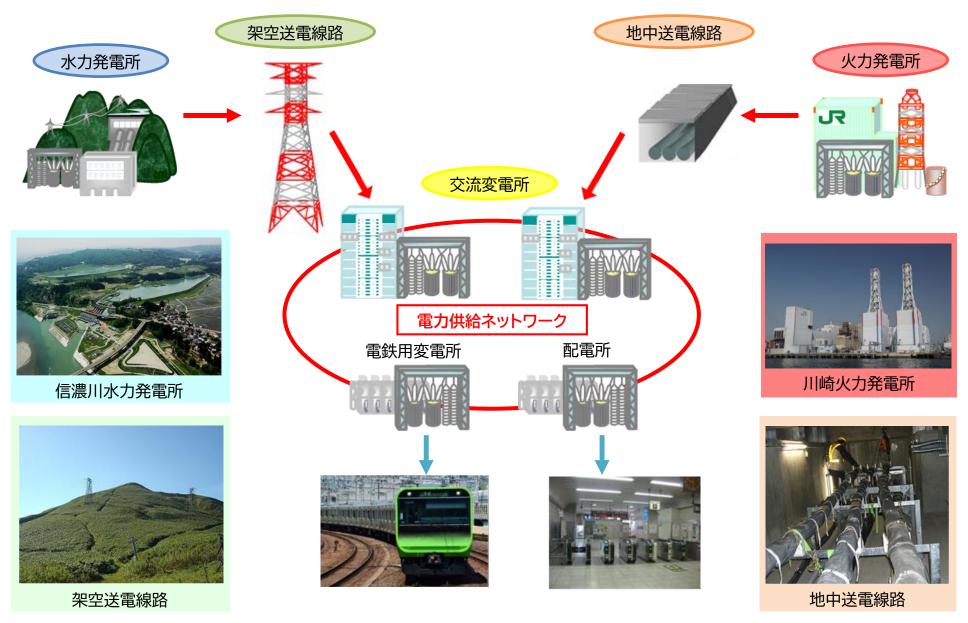
東京都市圏の代表交通手段分担率


Aggregate from national urban traffic characteristics survey (nationwide person trip survey before 1999)

注:6時点全てで調査を行っている6都市(所沢市、千葉市、松戸市、東京区部、横浜市、川崎市)を対象に集計

Note: Aggregate for the 6 cities (Tokorozawa, Chiba, Matsudo, Tokyo 23 wards, Yokohama, Kawasaki) that were investigated in all 6 years.


ゼロカーボン・チャレンジ2050



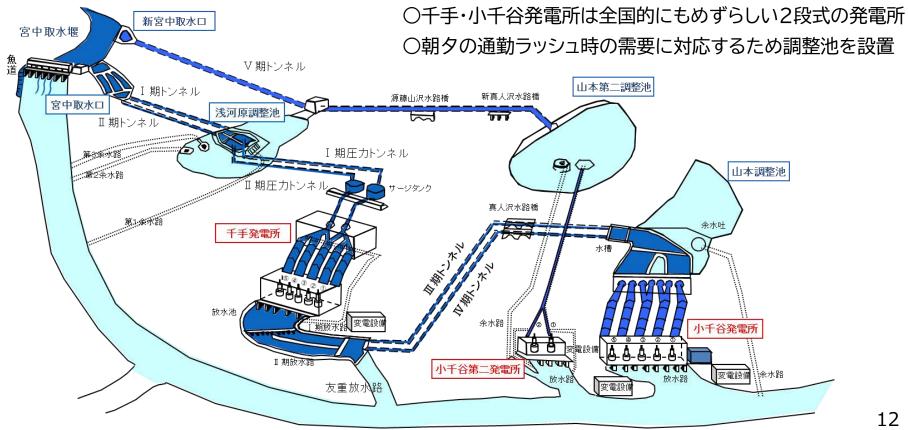
〇川崎発電所(火力)と信濃川発電所(水力)と保有し、首都圏を中心に自営電力を供給

■ つくる~自営発電所のネットワーク

■つくる~信濃川水力発電所の概要

◆所在地 新潟県十日町市 小千谷市

◆認可出力 449,000kW


◆運転開始 1939年(昭和14年)

参考: 関西電力㈱ 黒部川第四発電所 認可出力335,000kW

小千谷·小千谷第二発電所全景

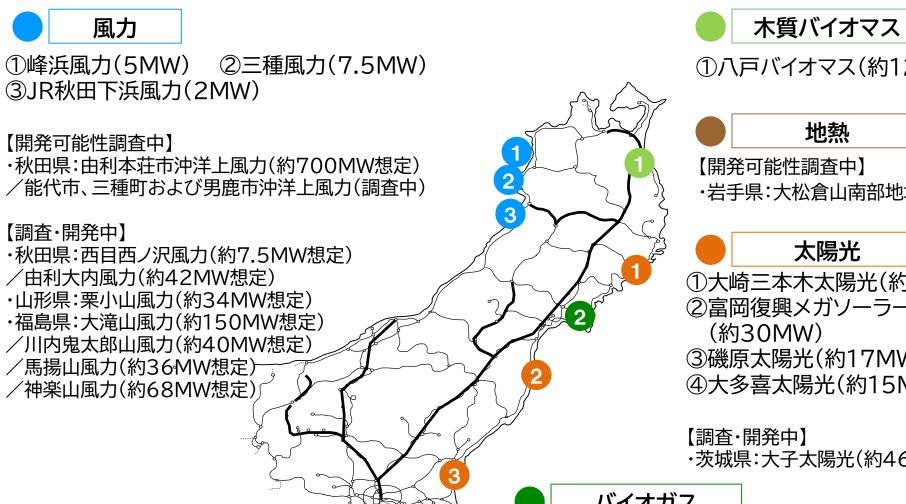
発電所名称	出力	有効落差
千手発電所	12万kW	52.1m
小千谷発電所	12.3万kW	48.2m
小千谷第二発電所	20.6万kW	107.6m

■つくる~川崎火力発電所の概要

- ◆所在地 神奈川県川崎市
- ◆認可出力 740,600kW
- ◆運転開始 1930年(昭和5年)
- ◆敷地面積 67,351㎡(東京ドーム約1.4倍)

ISO審査登録証

川崎発電所全景


◆火力発電設備表

ユニット	1 号 機	2 号 機	3 号 機	4 号 機
運転開始	2021年	1993年	1999年	2014年
発 電 方 式	複合サイクル発電(一軸)	複合サイクル発電(一軸)	複合サイクル発電(一軸)	複合サイクル発電(一軸)
認可出力(kW)	212,600	187,400	198,400	210,600
効 率 (%)	50.6	49.2	50.3	50.6
燃料	天然ガス	都市ガス	天然ガス	天然ガス
送電設備	地中ケーブル1回線 (154kV、66kV)	地中ケーブル (154kV)	地中ケーブル (154kV)	地中ケーブル (154kV、66kV)
環境対策設備	排煙脱硝装置 水噴射装置	排煙脱硝装置 低NOx燃焼方式	排煙脱硝装置 低NOx燃焼方式	排煙脱硝装置 低NO×燃焼方式

■ つくる~再生可能エネルギーの開発

OJR東日本エネルギー開発㈱とともに再生可能エネルギーの開発を推進

①八戸バイオマス(約12MW)

•岩手県:大松倉山南部地域地熱

- ①大崎三本木太陽光(約6MW)
- ②富岡復興メガソーラーSAKURA
- ③磯原太陽光(約17MW)
- ④大多喜太陽光(約15MW)

·茨城県:大子太陽光(約46MW想定)

バイオガス

- ①Jバイオフードリサイクル横浜工場(約2MW)
- ②Jバイオフードリサイクル仙台工場(約0.8MW想定)

※②は2022年度稼働予定

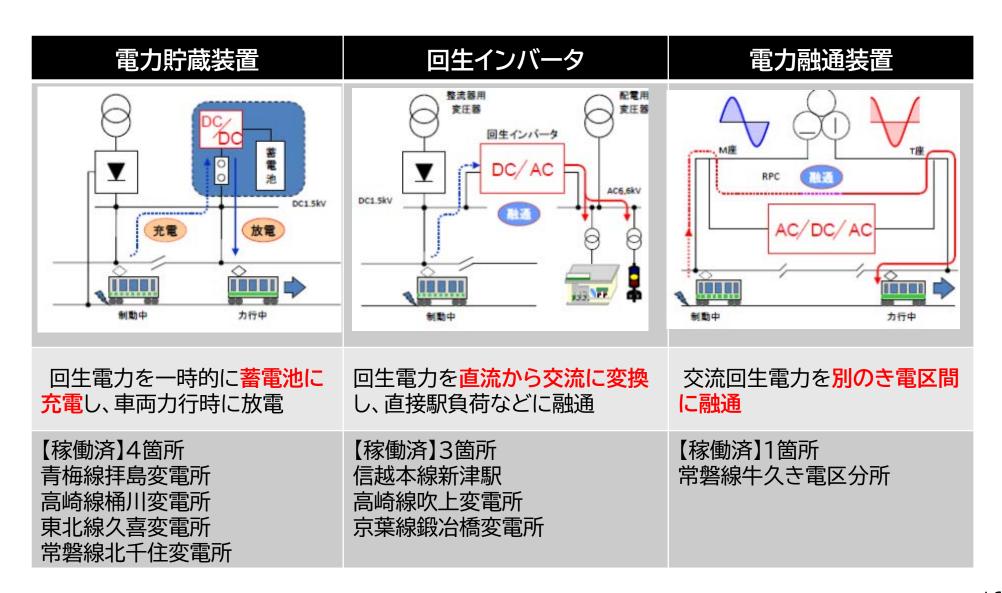
■つくる~再生可能エネルギー導入の現状

○稼働中の主な再生可能エネルギー発電所

JR秋田下浜風力発電所 (2016稼働)

Jバイオフーズリサイクル横浜工場 (2018稼働)

八戸バイオマス発電(青森県) (2018稼働)


大崎三本木太陽光発電所(宮城県) (2020稼働)

峰浜風力	5 MW
三種風力	7.5 MW
JR秋田下浜風力	2 MW
大崎三本木太陽光	約6 MW
富岡復興メガソーラー SAKURA	約30 MW
磯原太陽光	約17 MW
大多喜太陽光	約15 MW
八戸バイオマス	約12 MW
Jバイオフーズ リサイクル横浜工場	約2 MW

▶ ためる~省エネへの取組み(回生電力の有効活用)

○「電力貯蔵装置」、「回生インバータ」、「電力融通装置」の設置を推進

つかう~省エネへの取組み(省エネ車両)

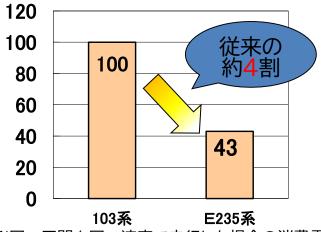
〇新幹線電車 200系とE7系の比較

200系(1982) サイリスタ位相制御

E7系(2015) VVVFインバータ制御・回生ブレーキ

エネルギー消費量

○通勤電車(山手線) 103系とE235系の比較

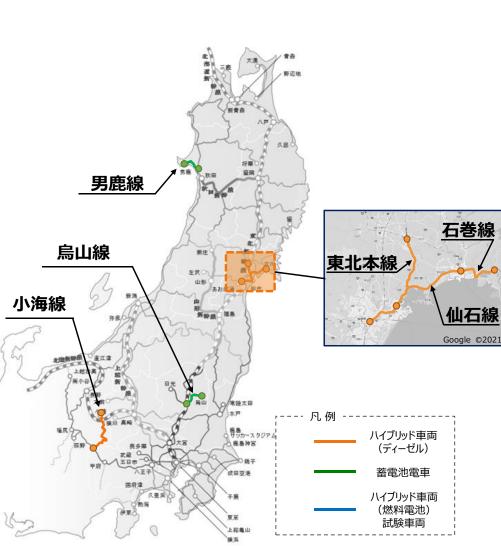


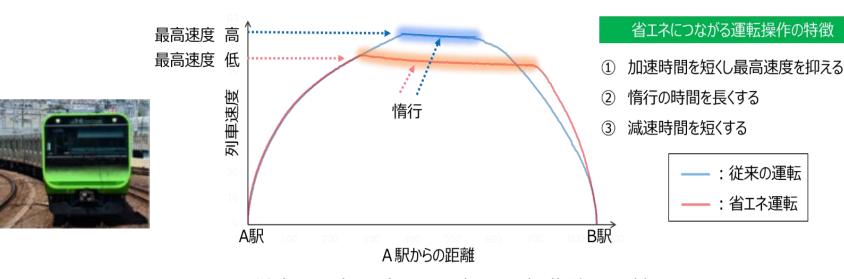
103系(1963) 抵抗制御

E235系(2015) VVVFインバータ制御・回生ブレーキ

エネルギー消費量

※同一区間を同一速度で走行した場合の消費電力


つかう~省エネへの取組み(非電化区間車両)



■ つかう〜省エネへの取組み(省エネ運転)

○山手線における省エネ運転の研究

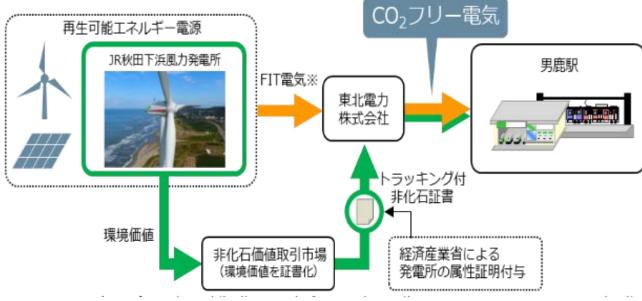
従来の運転と省エネ運転の運転曲線の比較

〇今後の予定

- ・分析作業の自動化
- ・乗務員への省エネ運転支援
- ・他線区への展開
- ・自動運転への知見活用

つかう~省エネへの取組み(エコステ)

○当社各支社1駅ずつ駅を選定し、「エコステ」モデル駅として整備


つかう~省エネへの取組み(エコステ)

【事例①】男鹿駅(秋田県)

- ・9基の小形風力発電機を設置し、駅で使用する電力に充当
- ・一部の電力を交流蓄電池駆動電車「ACCUM」の運行に使用
- ・男鹿駅で使用する電気をJR秋田下浜風力発電所を活用した「CO2フリー電気」に切り替え ⇒CO2削減量120トン/年

つかう~省エネへの取組み(エコステ)

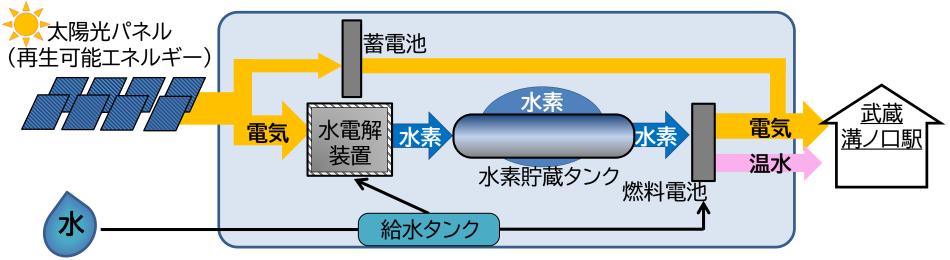
【事例②】高輪ゲートウェイ駅(東京都)

○膜屋根採用による温熱環境向上及び照明 電力量の削減

○東北の木材使用による環境配慮

○太陽光パネルの設置

○小型風力発電機の設置


○その他、緑化空間の整備やLED照明器具を採用

■ つかう〜省エネへの取組み(エコステ)

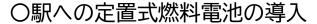
【事例③】武蔵溝ノ口駅(神奈川県)

○自立型水素エネルギー供給システム導入、太陽光パネル設置

平常時:ホーム上の照明に電力を供給

災害時:ラチ外コンコース照明や旅客トイレの照明・ポンプに電力を供給(2日間)

つかう~水素社会の実現に向けて


〇高輪ゲートウェイ駅に隣接する用地を 利用した水素ステーションを開設

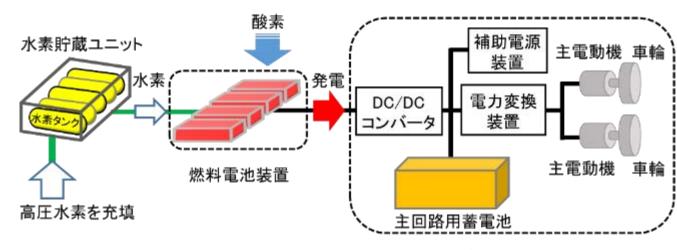
○燃料電池バス、燃料電池自動車の導入

(将来構想) 総合水素ステーション 燃料電池鉄道車両を軸とし、 燃料電池化されたバスや乗用 車といったモビリティ、駅や周 辺街区への水素供給を考慮し た、総合水素ステーション構想 を検討

○ハイブリッド車両(燃料電池) 試験車両(愛称名:HYBARI)



つかう~水素社会の実現に向けて



ハイブリッド車両(燃料電池)試験車両FV-E991系(HYBARI)

※2022年3月より鶴見線・南武線で実証実験開始予定

主要目			
最高速度	100km/h		
航続距離	約140km		
蓄電池	リチウムイオン電池 120kWh× 2		
水素貯蔵	51ℓ×20本 (水素質量約40kg)		

輸送サービス変革

地方における輸送モードの変革

• 最適な輸送モードの追求

• BRT自動運転の実現

【BRT自動運転実証実験バス】

都市

地域連携ICカードの普及

宇都宮地域「totra」 2021年春開始

駅を「地域の拠点」に

【郵便局と駅窓口業務の一体運営】 (内房線江見駅)

駅を中心としたまちづくり

「関係人口」 →「定住人口」増加へ

地方

観光振興

観光振興・インバウンド

- 観光資源の発掘・発信
- インバウンド向け情報発信
- 体験型観光施設の展開

【東北DC】

【観光果樹園】

地方都市への スマートホテル導入

ワーケーション・ 多拠点居住を支援

JRE MALL

農産物やオンラインツアー等、地域に 密着した商品の販売

地域活性化

地方創生~ローカルDX①

大規模プロモーション

巡るたび、 出会う旅。 東北

東北DCに引き続き 東北の秋冬 プロモーション展開

東京を目的地とした旅行喚起の宣伝 北陸・スキーなど冬のキャンペーン展開

ワクチン接種者向けの旅行喚起

ワクチン接種証明書や PCR 陰性証明書 等を活用した商品やキャンペーンを実施

JRE MALL

JRE MALLにおいて地域で使える電子 チケットを販売。現地への訪問を喚起

MaaSの充実

TOHOKU Maas

- ・東北のプロモーションに合わせ、引き続き 東北6県に展開(11~3月)
- ・乗合交通サービスは、一関エリアで、地域 住民の生活も支える「よぶのる一関」として 内容を拡充して運行継続

Tabi=connect

- ・地域・観光型MaaSのノウ ハウや機能をパッケージ化
- ・TOHOKU MaaSで 活用開始予定

ワーケーション

長野県軽井沢町・ 信濃町等の 施設や商品展開

新幹線オフィス車両

新幹線全方面の すべての列車に導入

ふるさと納税

地方創生~ローカルDX②

震災復興、農業振興

■JRフルーツパーク仙台あらはま

開発プロジェクトの推進

■青森駅東口開発

■いわき駅南口開発

JRE POINT生活圏拡大

Suicaの共通基盤化

バス定期券や割引等の地域独自サービス
Suicaエリア等で利用可能な乗車券や電子マネー等の
Suica のサービス

地域交通事業者への導入を推進

2021年3月導入

2022年春

2023年春

2023年春以降

栃木県 totra 岩手県 Iwate Green Pass 秋田県 山形県 群馬県 青森県 (青森エリア・ハ戸エリア)

岩手県 (交通事業者追加)

栃木県

(交通事業者追加)

青森県・岩手県・ 秋田県内のJR線44駅で のSuica利用が可能 に

(参考)鉄道のエリア拡大

