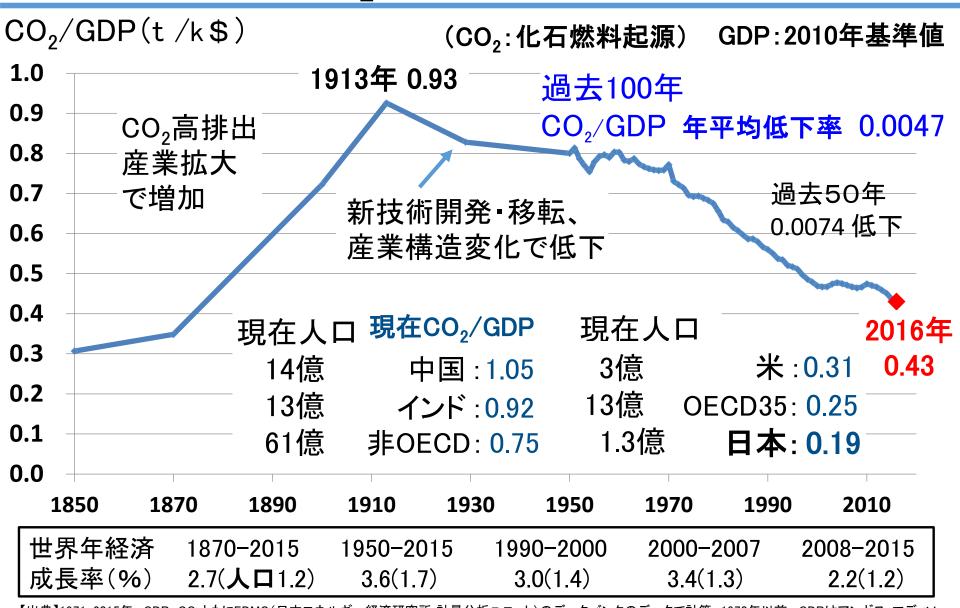
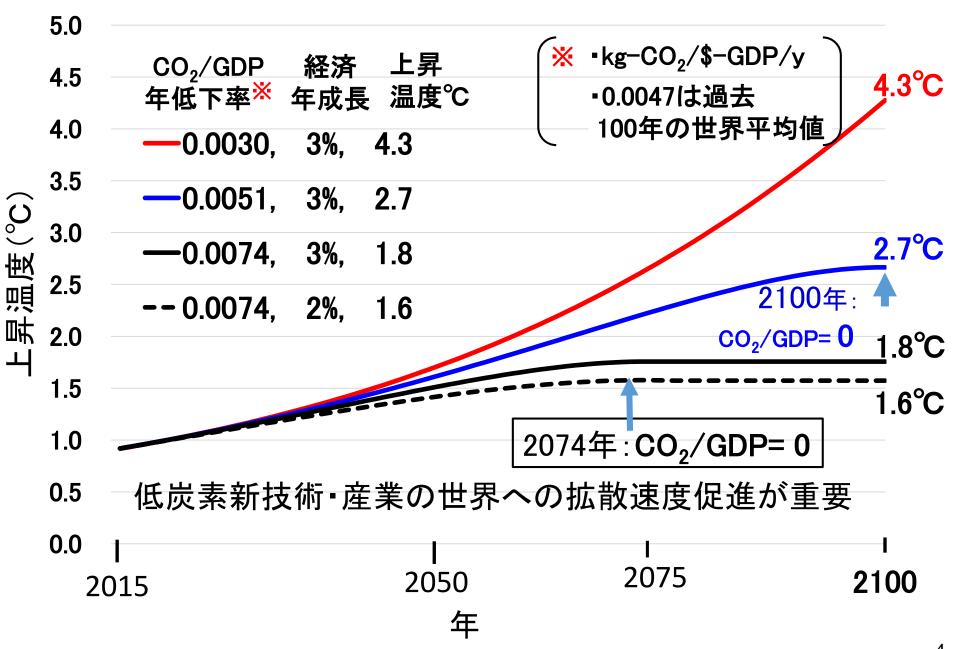


『明るく豊かなゼロ炭素社会』に向かう2050年の姿


2018.12.12 低炭素社会戦略センター 科学技術振興機構

山田興一

内容

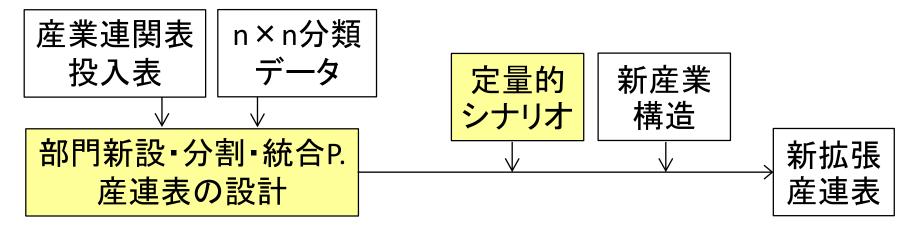

- 1: 気温上昇抑制への[CO₂排出量/GDP]関数 の重要性
- 2: 明るい脱炭素社会へ
- 3: 再生可能エネルギーコスト
- 4: CO2排出量80%以上削減電源構成、コスト
- 5: 電源シナリオ比較
- 6: まとめ

世界のCO₂排出量/GDP比の変遷

【出典】1971-2015年: GDP、CO₂ともにEDMC(日本エネルギー経済研究所 計量分析ユニット)のデータバンクのデータで計算。1970年以前: GDPはアンガス・マディソン著『世界経済の成長史 1820~1992年』、CO₂はBoden, T.A., G. Marland, and R. J. Andres, 'Global, Regional, and National Fossil Fuel CO₂ Emissions.' Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi 10.3334/CDIAC/00001_V2010. 等からのデータで計算。なお、1971-2015年のGDPは2010年基準、1970年以前は1990年基準のため、1971年比率でつなげ2010年基準に合わせた。

地球温度上昇と技術進歩、経済成長の関係

人口と労働人口者数


	人口(百	万人)	労働人口(百万人)		
	全数	60才以上	全数	60才以上	
2017年	126.7	43.0	67.2	13.6	
2050年	106.1 (-0.5%/年)	44.6	50.1 (-0.9%/年) <mark>※</mark>	12.0 (60~69才の非労 働人口560万人)	

※ 60~69才非労働人口が30%減少すると年低下率は-0.9から-0.8%になる。

1971-2015年の世界、先進国の人口成長率と経済成長率(%/年)

	世界	日本	米国	独	英	仏
人口	1.5	0.4	1.0	0.1	0.3	0.5
GDP	3.0	2.4	2.7	1.9	2.1	2.1

LCS産業連関プログラム開発

(未来社会のGDPとCO₂排出量)

電力需要		800TW	2011年	
電力部門CO2削減率		電力のみ	電力+※	基準値
CO₂排出量	単純計算	793	559	1,254
(Mt-CO ₂)	IO分析	791	623	1,254
GDP	単純計算	486	564	489
(兆円)	IO分析	494	561	409

※最終需要に 与えるインパクト例 医療、運輸、宿 泊、教育など 74兆円。 鉄鋼,運輸の排 出係数×0.2

十四ル※画シュニ 西海西州 四水

1.6

6

0.6

24

8

9

41

1.2

7

0.2

26

9

9

44

0.9

6

0.2

26

9

42

8

0.3

28

11

9

48

太陽尤発電ン人ナム原価の内訳(円/W)								
	2018	20	20	2030				
	単Si	単Si	CIGS	単Si	CIGS	CIGS タンデム	ペロブス カイト	
モジュール変換効率	20%	22%	18%	25%	22%	30%	20%	
ウェハ厚 (μm)	150	100	_	100	_	_	_	
切り代 (µm)	120	100	_	100	_	_	_	
[≩ 原材料費	23	16	22	15	18	19	18	

3

9

1.3

29

18

20

67

(2012年市販Siモジュール変換効率 = 17%, 全体コスト=171円/W)

4

12

41

29

20

90

1.4

8

0.2

32

22

20

72

冰ツ州 ュール(円/

モジュール小計

架台(工事費含)

システム全体(円/W)

パワーコンディショナ

用役費

設備費

人件費

干沙沙

BOS

リチウムイオン電池の現状と将来シナリオ (日本の売価 車輌用20円/Wh)

			現状	2020年	2030年
			Ni系電池 Ni系電池		Li-S系
生産規	模[G\	Wh _{ST} /y]	1(10)	10	10
収率	['	%]	66(90)	90	90
エネルギ	一密度	麦[Wh _{ST} /kg]	250	340	530
活物質	(正極	5/負極)	LiNi _{0.85} Co _{0.12} Al _{0.03} O ₂ /黒鉛	LiNi _{0.85} Co _{0.12} Al _{0.03} O ₂ /黒鉛系	Li-S,C /Li金属
	正/ <mark>負</mark> 極容量密度 [mAh/g]		度 200/ <mark>300</mark> 270/ <mark>370</mark>		1500/2900
	正/ <mark>負</mark> 極の 実容量対理論値の比		理論値の比 0.71/0.81 0.97/0.99		0.9/0.75
製造コ	変動	原材料費	10.2 (7.5)	4.8	5.5
スト	費	用役費	0.5(0.4)	0.4	0.1
[円	固定費		3.2(1.7)	1.4	1.0
/Wh _{ST}]	•	合 計	13.9(9.6)	6.6	6.6

低炭素発電用 水素の製造

1. 国内オンサイト製造 水素 アルカリ PV電源 水電解 火力 水素 バイオマ スガス化 発電所 2. 豪州製造・日本サイトへ輸送 水素 褐炭 水素液化 海上 褐炭 ガス化 基地 積出基地 輸送 豪州◆

- 1 + 4 | 1 / 4 - - - - - | 14F111 😑

2

水素

生産量

年間操業率

原料単価

変動費計

固定費計

合計

原料•

用役起源

設備起源

合計

g/MJ

20

水素製造コストとCO ₂ 排出量							
	国内オン	日本サイ	トへの輸送				
	アルカリ水電解バイオマスガス化			褐炭ガス化(豪州含CCS)			
	PV電源	バイオマス	褐炭				
	(6円/kWh)	(3円/kg)	(1.2円/kg)				
kt/年	29.7	46.7	84.6				
PJ/年	3.6	5.7	10.2				
	0.1	0.9	0.9				
円/MJ	_	0.16	0.11				
				工	程内訳		
製道	造コスト(発電所	入口での水素)		ガス化	液化•物流		
円/MJ	2.4	0.5	1.1	0.6	0.5		
円/MJ	11.7	0.5	3.7	1.8	1.9		
円/MJ	14.1	1.0	4.8	2.4	2.4		
CO ₂	排出量(発電所						
g/MJ	10	0	31	24	7		
g/MJ	10	2	9	5	4		

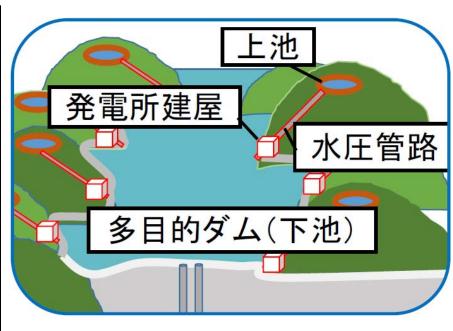
40

29

発電コスト, CO2排出量削減率80% (565 → 113Mt/y, 2050)

水素発電利用量 (TWh) 0 0 0 0 51 0 蓄電池利用量(TWh) 172 135 120 175 231 182	電	力需要(TWh)	700		800		1,000	
ING		原子力	0	0	0	100	0	100
ING 160 277 166 111 317 317 317 太陽光 397 327 306 327 524 411 風力 2 77 60 77 211 86 地熱 12 12 12 12 12 12 12 1	×	水力	130	130	130	130	130	130
太陽光 397 327 306 327 524 411 1		石炭	63	16	61	83	0	0
歌 世 地熱 バイオマス 合計12 2412 31 786112 31 86612 87112 31 86612 871 31 86612 871 32 32 32 32 33 34 34 34 34 34 34 34 34<		LNG	160	277	166	111	317	317
歌 世 地熱 バイオマス 合計12 2412 31 786112 31 86612 87112 31 86612 871 31 86612 871 32 32 32 32 33 34 34 34 34 34 34 34 34<		太陽光	397	327	306	327	524	411
歌 四 世 地 大 大 大 素 発電利用量(TWh)12 24 786 172 187 186 187 185 186 187 186 187 187 186 187 187 188 188 188 188 188 188 189 189 189 180		風力	2	77	60	77	211	86
水素発電利用量(TWh) 0 0 0 0 51 0 蓄電池利用量(TWh) 172 135 120 175 231 182	無	地熱	12	12	112	12	12	12
水素発電利用量(TWh) 0 0 0 0 51 0 蓄電池利用量(TWh) 172 135 120 175 231 182		バイオマス	24	31	31	31	31	31
蓄電池利用量(TWh) 172 135 120 175 231 182		合計	786	871	866	871	1,225	1,086
	水臺	表発電利用量 (TWh)	0	0	0	0	51	0
要事外部件 (CM/k) 560 451 400 451 901 600	蓄電	電池利用量(TWh)	172	135	120	175	231	182
备电池改加 (GWN)	蓄	電池設備(GWh)	568	451	400	451	801	600
発電コスト (円/kWh) 10.3 11.5 10.8 11.6 12.8 11.8	発冒	直コスト (円/kWh)	10.3	11.5	10.8	11.6	12.8	11.8

現出力端電力コスト=12.9円/kWh


2050の電源構成とコスト

電	力需要(TWh)	1000	1200	800		
CC	2排出量削減率	80 %	80%	80 %	90 %	98 %
	原子力	0	0	0	0	0
(TWh)	水力	130	130	130	130	130
	石炭	0	0	16	0	0
	LNG	317	317	277	159	32
	太陽光	524	672	327	502	599
	風力	211	559	77	276	404
然	地熱	12	12	12	12	112
年間	バイオマス	31	31	31	31	31
	合計	1,225	1,722	871	1,109	1,308
水素	長発電利用量 (TWh)	51	156	0	90	162
蓄電	冒池利用量(TWh)	231	284	135	211	271
蓄冒	『 池設備(GWh)	801	1,112	451	782	1,003
発電	コスト (円/kWh)	12.8	16.2	11.5	15.9	20.9

2050年90%削減シナリオ(電力需要1000TWh)と 新揚水発電所の導入例

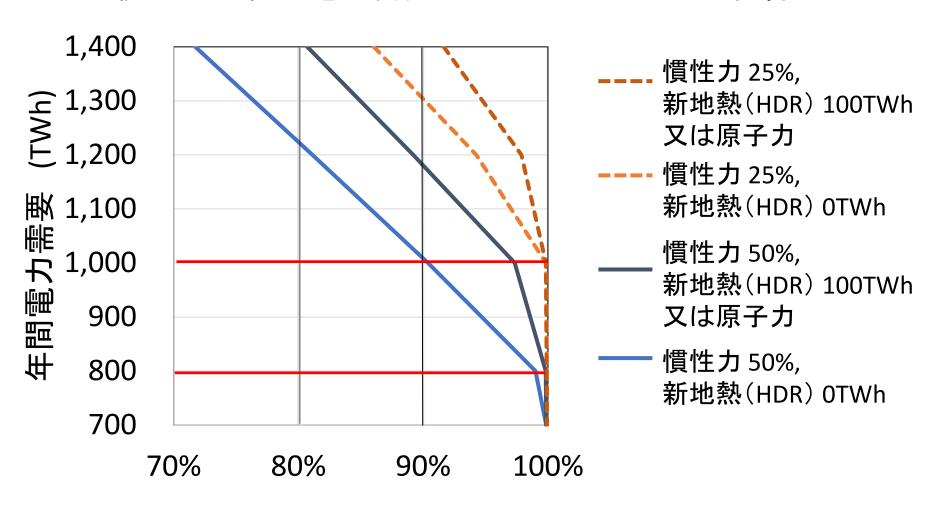
		基準	新揚水 追加
	LNG	159	159
年間発電電力量 (TWh)	太陽光,風力	1294	1080
	他 再エネ	173	173
件 。	合計	1583	1368
量(ん	水素	193	68
利用量 (TWh)	揚水	78	206
屋 □	蓄電池	206	281
設備 容量 (GWh)	揚水	130	287
影をの	蓄電池	902	1005
発電コス	卜 (円/ kWh)	18.9	15.9

新揚水追加シナリオの蓄電システムの発電単価 蓄電池 22、 揚水 25、水素 50 [円/kWh]

既存ダムを下池として利用した 揚水発電所 (高度差 200m)

新揚水設備容量ポテンシャル 1000~1700GWh (既設揚水 130GWh)

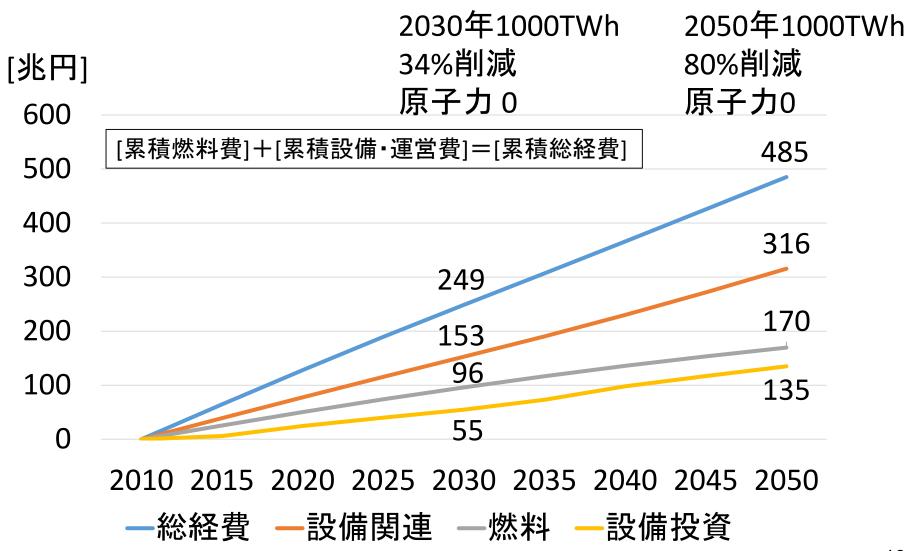
情報化社会の電力消費

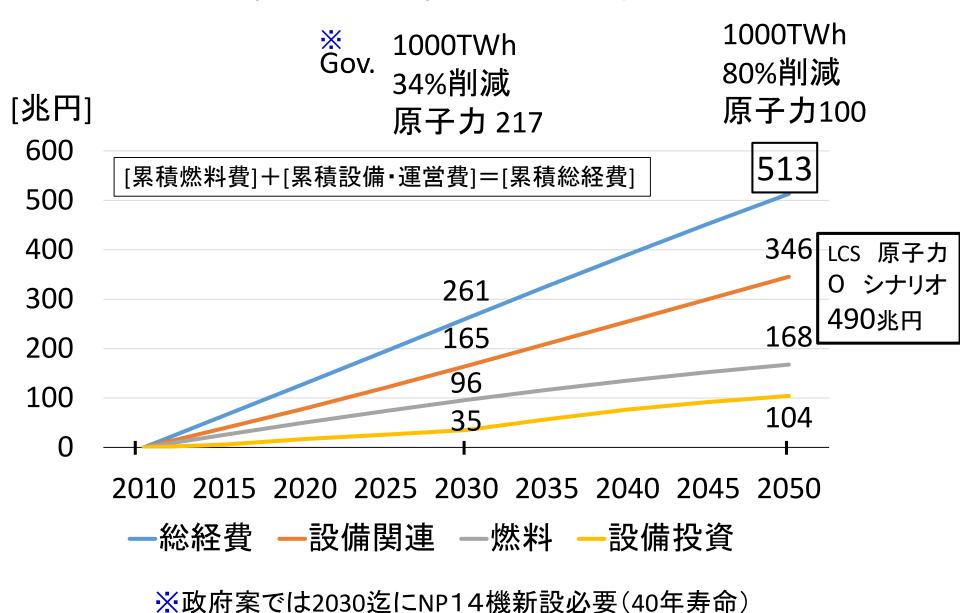

(データ処理量増加によるIT機器、データセンターでの増加)

		2017年	2030年		2050年	
		年間成長(%)	10	27**	5	10
力消費 「Wh)	日本	55	190	1,200	290	14,000
電力 (TM	世界	1,600	5,500	36,000	8,400	41,000

※過去数年の世界年間成長率は27% (CISCO) (日本乗用車登録台数1966-2000年の年成長率は9%)

CO。排出削減ポテンシャルと電力需要


ー 慣性力制約の電力需要とCO2削減量に与える影響 ー


CO₂排出量削減率の最大削減ポテンシャル (2013年比)

HDR: 高温岩体地熱 (Hot Dry Rock)

80%削減低炭素電源の累積総経費 LCSシナリオ例 原子力Oで2050年にCO₂を80%削減

80%削減低炭素電源の累積総経費(2030政府シナリオ経由し2050年80%削減へ)

まとめ

脱炭素社会になることは必然と考えて行動している国、 組織、個人が増えている。

現在、先進国でも2050年までにCO₂排出量を大幅に削減する具体策は未だ明確になっていない。それはエネルギー起源のCO₂排出量は条件を決めれば算出できるが、未来の産業構造を明確にすることは困難なためである。その打破のために定量的な多くのシナリオを作成し、未来を見通すことが重要である。

今後、新しい技術、システムが次々と実装されることは確実である。日本は世界の先頭に立って「明るいゼロ炭素社会づくり」に向かって進むことにより、発展する可能性がある。