


蓄電池システム(Vol.8)

- 全固体リチウムイオン電池の製造コスト計算と研究課題 -

リチウムイオン電池(LIB)について、高エネルギー密度化とともに安全性に対する要求が高まる中、 無機固体電解質を用いる試みが注目されている。本稿では硫化物系固体電解質を用いた全固体LIBについてラミネート型セルを設計して製造コストを計算し、低コスト化に係る課題を検討した。

- ■固体電解質75Li₂S-25P₂S₅を用いた全固体 LIBの製造コスト計算値は、現状モデル 2:61~328 円/Wh、将来モデル1~3:6 ~17 円/Whであった(図1)。一方、従 来LIB(現状モデル2と同サイズ)は14 円 /Whである。
- ■全固体LIBの製造コストには、①固体電解質の価格、②固体電解質の使用量、③硫化物系固体電解質を用いることにより生じる

製造プロセス(高圧プレス、固体電解質存在時の雰囲気制御)にかかるコストが大きく影響することがわかった。

		0 —										
				現状モデル1	現状モデル2	改良案1	改良案2	改良案3	改良案4	将来モデル1	将来モデル2	将来モデル3
電池	電極活物質 材料(正極/負極)			NCA / C ₆	NCA / C ₆	NCA ∕ C ₆				NCA / C ₆	$Li_{1.2}Ti_{0.4}Mn_{0.4}O_2 \diagup Si$	S-C/Li
構成		容量(正極/負極)	[mAh/g]	196 / 353	196 / 353	196 / 353				196 / 353	300 / 1,007	1,508 / 2,895
	正極合剤の構	成比(活物質/固体電解質/その他)	[vol.%]	46/48/6	46/48/6	46/48/6	46/48/6	46/48/6	63/28/9	63/28/9	64/28/8	50/28/22
	負極合剤の構	成比(活物質/固体電解質/その他)	[vol.%]	53/41/6	53/41/6	53/41/6	53/41/6	53/41/6	66/27/7	66/27/7	59/27/14	100/0/0
電池	重量エネルギー密	密度	[Wh/kg]	189	194	219	194	194	252	278	441	788
性能	体積エネルキー密	本積エネルギー密度		419	452	495	452	452	631	676	1,027	979
製造	正極活物質基準の累積収率		[%]	64	64	64	88	64	64	88	88	88
条件	固体電解質の	固体電解質の価格		10,000~100,000	10,000~100,000	3,000~10,000				3,000~10,000	3,000~10,000	3,000~10,000
備考	現状モデル2との	D相違点(固体電解質価格を除く)		電池サイス・小	_	電極合剤層	製造収率up	製造効率up	固体電解質の	改良案1~4	高容量電極材料に	
	※1:NCAはLi(N	Ni _{0.85} Co _{0.12} Al _{0.03})O ₂ の略称				厚みup		+ 雰囲気制御の 緩和	含有量減	の組合わせ	置換 + 改良案1~ 4の組合わせ	置換 + 改良案1 ~4の組合わせ

今後の課題

図1評価用全固体LIBの製造コスト比較

全固体LIBの製造コストと電池性能を将来モデルまで引き上げるには、①所望の物性(良好なリチウムイオン伝導性、化学的・電気化学的安定性、低圧プレスで良好な界面を形成し得る柔軟性など)、②原材料が安価、③大量生産に適した製造プロセス、を満たす固体電解質材料を見出すことが重要。