技術開発編

石炭ガス化による水素、アンモニアの経済性とCO₂排出量
－石炭ガス化（CCSを含む）による
水素、アンモニア製造・物流システムの比較検討－

平成31年2月

Economy of Hydrogen and Ammonia by Coal Gasification and CO₂ Emissions:
Study on Production and Logistics of Hydrogen and Ammonia by Coal Gasification with CCS

Strategy for Technology Development
Proposal Paper for Policy Making and Governmental Action
toward Low Carbon Societies

国立研究開発法人科学技術振興機構
低炭素社会戦略センター

LCS-FY2018-PP-13
提案

本提案書は、水素製造や輸送方法について水素関連技術マップに示すような検討範囲において、水素の製造、輸送を通じ最終利用時点でのコストやCO₂排出量について明らかにするものであり、既提案書[1,2]の内容を追加、補完するものである。本提案書では、海外産炭地でのCCSを伴う石炭ガス化プロセスにより製造された水素を、湾岸部までパイプライン輸送し、湾岸部にて液体燃料（液体水素ならびにアンモニア）に変換した後、タンカーにて国内の基地に海上輸送し、隣接する発電所で利用する場合のコストとCO₂排出量について検討した。

その結果、次のことがわかった。
1) CCSプロセスのCO₂捕集率を88%に設定したが、アンモニア、水素ともに、国内発電所入口にて、約40g/MJのCO₂排出量となり、これは天然ガスを直接燃焼した場合のCO₂排出量である56g/MJに対して、約70%相当の高い値であったことが分かった。カーボンフリー燃料の実現には、99%以上の高い捕集性能を有する低コストCCSプロセスの開発が必要である。

2) 現状の石炭価格体系では、原料（褐炭、瀝青炭）の違いによる水素の製造コスト、CO₂排出量への影響は少ないことが分かった。

3) 発電用燃料の選択肢の一つである、アンモニアならびに水素の利用について、価格とCO₂負荷の点から、アンモニアの利用可能性が示された。

Summary

This proposal aims to clarify the cost and CO₂ emissions of fuels (liquefied hydrogen and liquid ammonia) at the power plant in Japan delivered through the manufacturing and supply chain described as follows. 1) hydrogen is produced at the mining site by the coal gasification process with CCS and transported by the pipeline to the bay area. 2) after producing ammonia or hydrogen liquefaction, each fuel is shipped by the appropriate tanker transportation. This paper also aims to add and complement the already issued proposals [1,2]. By assuming that where the coal mining area is Australia, the coal type is brown coal and bituminous coal, the following knowledge and results have been obtained.

1) In spite of applying CCS process designed as 88% of CO₂ capture rate, CO₂ emissions at the gate of the power plant for both ammonia and hydrogen almost reaches to 40g/MJ, which is highly enough equivalent to about 70% of natural gas of 56g/MJ. In order to realize carbon free fuel, it is necessary to develop a CCS process having a high capture rate of more than 99% with lower cost.

2) It was found that the impact on hydrogen production cost and CO₂ emission by the type of raw material (lignite, bituminous coal) was small under the current coal price.

3) The possibility of using ammonia as the fuel for power generation has been shown from the viewpoint of price and CO₂ emission.
目次

概要

1. はじめに ... 1
2. 水素関連技術マップと検討範囲 ... 1
3. 石炭ガス化による水素製造と海上輸送 ... 4
 3.1 石炭ガス化による水素製造プロセス .. 4
 3.2 物質収支・熱収支による原単位算出 .. 6
 3.3 機器費、重量の算出 .. 6
 3.4 水素製造コストと CO2排出量の算出(注 1) .. 7
 3.5 製造水素の湾岸部へのパイプライン輸送 .. 9
 3.6 液化水素方式（方式 1）によるコストと CO2排出量の算出 ... 10
4. 製造水素のアンモニア変換と海上輸送 ... 14
 4.1 アンモニア合成方式（方式 2）によるコストと CO2排出量の算出 .. 14
5. 方式 1、2 による最終利用時点でのトータルコストと CO2排出量の比較(注 2) 19
6. 結論 .. 24

参考文献 ... 25

注 1） 「3.4 水素製造コストと CO2排出量の算出」は、石炭ガス化工程での水素製造コストと CO2排出量を算出したものである。製造コストは、プロセス設計から導かれた原単位と機器総額をもとに、変動費（原料費、用役費）と固定費（設備費、運転要員費）に分けて算出した。特に設備費については、LCS 機器コスト・重量データベースを使用して求めた主要機器の積上げベースの総建設費に対し、年間費率を 0.15 として求めた。また、CO2排出量においても、原料・用役普通と設備起源に分けて算出した。なお、計算の前提条件については、既刊 LCS 提案書[1]のとおりである。

注 2） 「5. 方式 1、2 による最終利用時点でのトータルコストと CO2排出量の比較」は 3 章で製造した水素を原料として液化もしくはアンモニア合成後、日本に海上輸送した最終利用時点でのコストと CO2排出量を、水素およびアンモニアの最終到達点を考慮して計算した比較である。
1. はじめに

海外の未利用エネルギーから水素を製造し、貯蔵輸送して利用する手法は、経済産業省の水素・燃料電池戦略ロードマップ[3]にも記載のある低炭素社会実現のために重要な検討項目である。また、このロードマップには2040年頃「水素製造にCCS[1]」を組み合わせ、又は再エネ由来水素を活用し、トータルでのCO₂フリーウェ人も供給システムを確立する。」との記載もある。本提案書は、海外産地でのCCSを伴う炭素ガス化プロセスにより製造された水素を、湾岸部までパイプライン輸送し、湾岸部にて、液体燃料（液体水素ならびにアンモニア）に変換した後、タンカーにて国内の基地に海上輸送し、隣接する発電所で利用する場合の、コストとCO₂排出量について検討する。

2. 水素関連技術マップと検討範囲

再生可能エネルギーの利活用形態の一つとして、カーボンフリーウェも取上げ、その関連技術マップを図2-1に示した。この図は資源やエネルギーをもとに、種々のプロセスにて製造されたカーボンフリーウェが、貯蔵、輸送等を経て最終利用に至るまでの経路を示したものである。今回の検討範囲は図2-1の中で黒枠のプロセスで示した。本提案書では、豪州において石炭ガス化による水素製造プロセスとその製造した水素を日本へ輸送するプロセスに分けて評価する。

水素製造プロセスについては、豪州産炭地でのCCSを伴う石炭ガス化プラントの原料として

(A) 業務
(B) 原料

を使用した場合の水素製造コストとCO₂排出量について比較検討を行う。次に、業務ガス化により製造した水素225,500ton/yを日本へ輸送するプロセスについて、製造された水素を、湾岸部までパイプライン輸送し、湾岸部にて、液体燃料（液体水素ならびにアンモニア）に変換した後、タンカーにて国内の基地に海上輸送する2つのケース（液体水素ならびにアンモニア）のコストとCO₂排出量の比較検討を行う（図2-2）。

1) 二酸化炭素回収・貯蔵技術
低炭素社会実現に向けた政策立案のための提案書
平成31年2月

図2-1 水素関連技術マップ

図2-2 液化水素方式とアンモニア方式の比較検討範囲
設定したプラント生産量や輸送量等のプロセス諸元を表 2-1、表 2-2 に示す。また、表 2-3 に計算に使用した年間費を示す。また、機器コスト、機器重量は LCS 機器データベースを用い、CO₂排出量は原料・用役源と設備源に分けて計算した[4]。
水素製造ノルメの（1）方式と（2）方式の比較は褐炭を原料とした水素の輸送について現状技術ベースと将来技術ベースで検討した。水素はパイプライン輸送で 80km 離れた沿岸にあるアンモニア合成プラントもしくは液化プラントまで運ぶ。アンモニアもしくは液化水素は出荷基地で貯蔵後、11,000km の距離を専用タンカーにより日本の受入基地に輸送する。両方式ともタンカーの主機関は現状技術ではディーゼル機関、将来技術では積荷のアンモニアもしくは水素を燃料とした発電システムによる電力を使用したモータ駆動方式とした。

表 2-1 液化水素方式の各プロセス諸元

<table>
<thead>
<tr>
<th>液化水素に変換輸送</th>
<th>現状技術概略仕様</th>
<th>将来技術概略仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>U012/ 褐炭ガス化</td>
<td>褐炭を受入粉碎後ガス化装置で水素を製造 3 系列
投入褐炭 178 万 ton/y/系列
生産水素 8 万 5 千 ton/y/系列</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>U014/ CCS</td>
<td>水素製造時に発生した CO₂を物理吸収法により捕集し、CO₂圧縮して貯留 3 系列
2 段セレクソール、COS 水和、水銀除去、硫黄回収
貯蔵 CO₂ 156 万 ton/y/系列
捕集率 0.88</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>U024/U026 水素パイプライン輸送</td>
<td>製造した水素をパイプラインで出荷基地に隣接した液化水素プラントへ輸送
輸送距離 80km、呼び径 18B、送入圧 4MPa、出口圧 2MPa 以上</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>U300/ 液化水素プラント</td>
<td>液化機へ水素を液化 15 系列
液化エネルギー：10kWh/H₂-kg
生産規模：50 ton/d/系列</td>
<td>液化機で水素を液化 3 系列
液化エネルギー：7kWh/H₂-kg
生産規模：250ton/d/系列</td>
</tr>
<tr>
<td>U330/ 液化水素出荷基地</td>
<td>液化水素を出荷まで貯蔵し、タングヘ払い出す
タンク容量 10,000m³×40
真空パラライト断熱タンク</td>
<td>タンク容量 100,000m³×3
積層真空断熱タンク</td>
</tr>
<tr>
<td>U340/ 液化水素タンカー輸送</td>
<td>液化水素を日本に海上輸送
液化水素容器 35,000m³
(2,200ton-H₂) 10 隻
C 重油を燃料に使用
航海速度 30km/h
輸送距離 11,000km</td>
<td>液化水素容器 140,000m³
(8,700ton-H₂) 2 隻
水素を燃料に使用
航海速度 40km/h</td>
</tr>
<tr>
<td>U350/ 液化水素受入基地</td>
<td>液化水素を受け入れ貯蔵し、隣接する発電所での利用を想定
概略仕様は出荷基地に同じ</td>
<td>現状技術に同じ</td>
</tr>
</tbody>
</table>
表 2-2 アンモニア合成方式の各プロセス諸元

<table>
<thead>
<tr>
<th>アンモニアに合成輸送</th>
<th>現状技術概略仕様</th>
<th>将来技術概略仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>U012/</td>
<td>褐炭ガス化</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>石炭ガス化</td>
<td>褐炭を受入粉碎後ガス化装置で水素を製造 3系列</td>
<td></td>
</tr>
<tr>
<td>投入褐炭 178 万 ton/y 系列</td>
<td>生産水素 8 万 5 千 ton/y 系列</td>
<td></td>
</tr>
<tr>
<td>U014/</td>
<td>CCS</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>水素製造時に発生した CO₂を物理吸収法により捕集し、CO₂圧縮して貯留 3系列</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2段セレクソール、COS水和、水銀除去、硫黄回収</td>
<td>貯蔵 CO₂ 156 万 ton/y 系列</td>
<td></td>
</tr>
<tr>
<td>貯蔵率 0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U024/U026</td>
<td>バイブライム輸送</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>製造した水素をパイブライムで出荷基地に隣接した液化水素プラントへ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>輸送</td>
<td>輸送距離 80km、呼び径 18B、送入圧 4MPa、出口圧 2MPa以上</td>
<td></td>
</tr>
<tr>
<td>U300/</td>
<td>NH₃合成プラント</td>
<td>將来技術 3 系列</td>
</tr>
<tr>
<td>NH₃出荷基地</td>
<td>Haber法 3系列</td>
<td>低圧法 3系列</td>
</tr>
<tr>
<td>反応器中 NH₃濃度 14%</td>
<td>反応器中 NH₃濃度 8%</td>
<td></td>
</tr>
<tr>
<td>生産規模 1,300ton/d 系列</td>
<td>生産規模 1,300ton/d 系列</td>
<td></td>
</tr>
<tr>
<td>U330/</td>
<td>NH₃出荷基地</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>NH₃を出荷まで貯蔵し、タンカーへ払い出す</td>
<td></td>
<td></td>
</tr>
<tr>
<td>タンク容量 120,000m³ ×2</td>
<td>円筒二重鋼断熱タンク</td>
<td></td>
</tr>
<tr>
<td>U340/</td>
<td>NH₃タンカー輸送</td>
<td>NH₃を燃料に使用</td>
</tr>
<tr>
<td>NH₃を日本に海上輸送</td>
<td>NH₃容器 110,000m³ (63,000t-NH₃) 2 隻</td>
<td></td>
</tr>
<tr>
<td>C 重油を燃料に使用</td>
<td>航海速度 30km/h</td>
<td></td>
</tr>
<tr>
<td>輸送距離 11,000km</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U350/</td>
<td>NH₃受入基地</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>NH₃を受け入れ貯蔵し、隣接する発電所での利用を想定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>概略仕様は出荷基地に同じ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 2-3 各プロセスの年間費率

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>U012</th>
<th>U014</th>
<th>U024/U026</th>
<th>U300</th>
<th>U330</th>
<th>U340</th>
<th>U350</th>
</tr>
</thead>
<tbody>
<tr>
<td>年間費率【ratio】</td>
<td>0.15</td>
<td>0.15</td>
<td>0.10</td>
<td>0.15</td>
<td>0.15</td>
<td>0.12</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

3. 石炭ガス化による水素製造と海上輸送
3.1 石炭ガス化による水素製造プロセス
石炭ガス化水素製造について、加圧ガス化炉プロセス[5]の反応成績等を参考にて、プロセス設計を行った。
3.1.1 プロセス設計基準
（1）原料組成（到着時組成）
表 3-1-1 に原料の褐炭、瀝青炭の代表的な組成を示す。

<table>
<thead>
<tr>
<th></th>
<th>褐炭</th>
<th>瀝青炭</th>
</tr>
</thead>
<tbody>
<tr>
<td>重量</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>炭素</td>
<td>27.2</td>
<td>63.8</td>
</tr>
<tr>
<td>水素</td>
<td>1.8</td>
<td>4.5</td>
</tr>
<tr>
<td>水分</td>
<td>60.0</td>
<td>11.1</td>
</tr>
<tr>
<td>灰分</td>
<td>0.8</td>
<td>9.7</td>
</tr>
<tr>
<td>その他</td>
<td>10.2</td>
<td>10.9</td>
</tr>
</tbody>
</table>

発熱量 (LHV) 11.5 26.2

（2）原料供給条件（到着ベース基準）
表 3-1-2 に原料供給条件を示す。この時の水素生産量は褐炭で 10,000TJ/y、瀝青炭で 24,000TJ/y である。

<table>
<thead>
<tr>
<th>原料供給量</th>
<th>褐炭</th>
<th>瀝青炭</th>
</tr>
</thead>
<tbody>
<tr>
<td>ton/時</td>
<td>225</td>
<td>221</td>
</tr>
</tbody>
</table>

（3）年間操業率 90%
（4）CO₂捕集率 88%
（5）ガス化方式 酸素吹き込み加圧ガス化炉

3.1.2 プロセスの構成
図 3-1-1 に石炭ガス化プロセスのブロック図を示す。
3.1.3 プロセスの記述

① 原料石炭受入、スラリー調製
石炭を受け入れ、スラリーを調製した後、ポンプにてガス化炉に供給する。

② ガス化、粗合成ガス冷却、スラグ分離
石炭は、操作温度、圧力がそれぞれ 1,300℃、5.8MPa のガス化炉に酸素とともに導入され、水素、一酸化炭素が主成分の高温粗合成ガスが生成する。炉内の熱交換器で冷却され、スラグを分離したガスは、合成ガススクラバーに送られる。

③ 合成ガススクラバー
合成ガス中の塩化物、アンモニア等を水洗により除去する。

④ シフト反応
シフト反応器では、CO と H₂O の比が 2 になるようにスチームが加えられて、シフトガス反応により水素を生成する。

⑤ CO₂捕捉（セレクソール）
セレクソールユニットでは、約 90% の CO₂を捕捉する。

⑥ CO₂圧縮
CO₂を圧縮して、15MPa にて貯留設備に送る。

⑦ PSA2)
PSA 装置を通して、純度 99.9%、払出し圧力 2.5MPa の製品水素を送り出す。

⑧ スチーム・電力供給システム
ガス化炉排熱ならびに PSA オフガス利用による、電力・スチーム供給システムを構築し、エネルギー自立を実現している。

3.2 物質収支・熱収支による原単位算出
3.1 節で示された条件に従い、物質・熱収支を計算し、原料、用役、触媒・ケミカル等の原単位を表 3-2-1 にまとめた。

<table>
<thead>
<tr>
<th>原単位</th>
<th>Unit</th>
<th>原料</th>
<th>硫黄</th>
<th>褐炭</th>
</tr>
</thead>
<tbody>
<tr>
<td>石炭</td>
<td>ton/H₂</td>
<td>21.0</td>
<td>8.7</td>
<td></td>
</tr>
<tr>
<td>工業用水素</td>
<td>m³/H₂</td>
<td>29.7</td>
<td>25.9</td>
<td></td>
</tr>
<tr>
<td>触媒・ケミカル原単位</td>
<td>ton/H₂</td>
<td>0.022</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>セレクソール溶媒原単位</td>
<td>m³/H₂</td>
<td>0.00067</td>
<td>0.00067</td>
<td></td>
</tr>
<tr>
<td>CO₂貯蔵原単位</td>
<td>ton/H₂</td>
<td>18.4</td>
<td>18.4</td>
<td></td>
</tr>
</tbody>
</table>

3.3 機器費、重量の算出
操作条件と物質・熱収支をもとに褐炭ベースの機器仕様を決定し、機器リストを作成した。機器リストの内容は、機器名、基数、操作温度、圧力、材質、寸法であり、製造機器・重量データベースを用いて、各機器のコストと重量を算出した。褐炭ベースの工程別機器費と機器重量を表 3-3-1 に示す。

2) 圧力変動吸着
低炭素社会実現に向けた政策立案のための提案書
技術開発編 石炭ガス化による水素、アンモニアの経済性と CO2 排出量
平成 31年2月

国立研究開発法人科学技術振興機構（JST）
低炭素社会戦略センター（LCS）

表 3-3-1 工程別機器費と機器重量（褐炭ベース）

<table>
<thead>
<tr>
<th>石炭ガス化水素製造 (含 CCS)</th>
<th>水素率</th>
<th>重量 [ton/y]</th>
</tr>
</thead>
<tbody>
<tr>
<td>石炭受入設備</td>
<td></td>
<td></td>
</tr>
<tr>
<td>石炭サイロ : 0.5日分</td>
<td>1,727</td>
<td>4,318</td>
</tr>
<tr>
<td>石炭粉碎・スラリー調製</td>
<td>2,950</td>
<td>7,376</td>
</tr>
<tr>
<td>給水</td>
<td>946</td>
<td>452</td>
</tr>
<tr>
<td>ガス化装置</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ガス化炉</td>
<td>20,006</td>
<td>5,340</td>
</tr>
<tr>
<td>空気分離装置</td>
<td>12,664</td>
<td>5,526</td>
</tr>
<tr>
<td>ガス精製</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COS水和、水素除去、硫黴回収</td>
<td>1,799</td>
<td>2,322</td>
</tr>
<tr>
<td>PSA</td>
<td>1,307</td>
<td>396</td>
</tr>
<tr>
<td>HRSG</td>
<td>1,318</td>
<td>1,067</td>
</tr>
<tr>
<td>スチームタービン</td>
<td>818</td>
<td>135</td>
</tr>
<tr>
<td>発電機</td>
<td>560</td>
<td>112</td>
</tr>
<tr>
<td>コンデンサー</td>
<td>335</td>
<td>614</td>
</tr>
<tr>
<td>冷水塔</td>
<td>282</td>
<td>315</td>
</tr>
<tr>
<td>冷水塔循環ポンプ</td>
<td>86</td>
<td>12</td>
</tr>
<tr>
<td>スラグ、石炭灰回収/処理設備</td>
<td>1,058</td>
<td>2,115</td>
</tr>
<tr>
<td>水素製造機器合計</td>
<td>45,856</td>
<td>30,101</td>
</tr>
<tr>
<td>水素製造装置建設費</td>
<td>91,711</td>
<td></td>
</tr>
</tbody>
</table>

CCS

<table>
<thead>
<tr>
<th></th>
<th>2段セレクソール</th>
<th>一式</th>
<th>3,829</th>
<th>5,160</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2捕集</td>
<td>15.3MPa/5.1MPa</td>
<td>5,800W</td>
<td>908</td>
<td>173</td>
</tr>
<tr>
<td>CCS装置機器合計</td>
<td></td>
<td>4,736</td>
<td>5,333</td>
<td></td>
</tr>
<tr>
<td>CCS装置建設費</td>
<td></td>
<td>9,473</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 水素製造コストと CO2排出量の算出

（1）コスト算出前提条件
表 3-4-1 にコスト算出の前提条件を示した[4,5]。

表 3-4-1 コスト算出の前提条件

<table>
<thead>
<tr>
<th>項目</th>
<th>営業単価</th>
<th>垢炭系</th>
<th>鹽素炭系</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料単価</td>
<td>円/ton</td>
<td>1,215</td>
<td>10,000</td>
</tr>
<tr>
<td>工業用水単価</td>
<td>円/m³</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>触媒・ケミカル単価</td>
<td>円/ton</td>
<td>70,800</td>
<td></td>
</tr>
<tr>
<td>セレクソール溶媒単価</td>
<td>百円/m³</td>
<td>0.428</td>
<td></td>
</tr>
<tr>
<td>CO2貯蔵単価</td>
<td>円/ton</td>
<td>1,250</td>
<td></td>
</tr>
</tbody>
</table>
（２）製造コストと CO₂排出量
表 3-4-2 に、褐炭と塩質炭ガス化による水素製造コストと CO₂排出量の比較結果を示した。総
建設費は褐炭、塩質炭で、それぞれ、900 億円、1,270 億円である。表 3-4-2 から水素製造コスト
は褐炭を原料とした場合 2.0 円/MJ に対して塩質炭は 1.8 円/MJ である。CO₂排出量は褐炭 25g/MJ
に対して塩質炭 21g/MJ である。

<table>
<thead>
<tr>
<th>生産量</th>
<th>水素製造</th>
<th>CCS</th>
<th>水素製造</th>
<th>CCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂ (ton/年)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>褐炭</td>
<td>84,563</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>塩質炭</td>
<td>200,858</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>建設費/系列</td>
<td>百万円</td>
<td>91,712</td>
<td>9,473</td>
<td>126,156</td>
</tr>
<tr>
<td>総建設費</td>
<td>百万円</td>
<td>91,712</td>
<td>9,473</td>
<td>126,156</td>
</tr>
<tr>
<td>年間操業率</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>プラント系列数</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運転人員/シフト/系列</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>運転人員/系列</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>年間労務費単価</td>
<td>百万円</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>年間消耗消費量</td>
<td>仟ton/y</td>
<td>1,776</td>
<td>1,742</td>
<td></td>
</tr>
<tr>
<td>年間工業用水消費量</td>
<td>千㎥/y</td>
<td>2,515</td>
<td>5,206</td>
<td></td>
</tr>
<tr>
<td>年間触媒・関連品額</td>
<td>仟y</td>
<td>1,628</td>
<td>1,628</td>
<td></td>
</tr>
<tr>
<td>年間セレクソール溶媒量</td>
<td>㎥/y</td>
<td>57</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>年間CO₂貯蔵量</td>
<td>仟ton/y</td>
<td>1,557</td>
<td>3,702</td>
<td></td>
</tr>
<tr>
<td>年間消耗消費量</td>
<td>仟ton/y</td>
<td>2,158</td>
<td>17,416</td>
<td>0</td>
</tr>
<tr>
<td>年間工業用水消費量</td>
<td>仟ton/y</td>
<td>126</td>
<td>260</td>
<td></td>
</tr>
<tr>
<td>年間触媒・関連品額</td>
<td>仟ton/y</td>
<td>115</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>年間セレクソール溶媒費</td>
<td>百万円</td>
<td>24.4</td>
<td>51.6</td>
<td></td>
</tr>
<tr>
<td>年間CO₂貯蔵費</td>
<td>百万円</td>
<td>1,946</td>
<td>4,113</td>
<td></td>
</tr>
<tr>
<td>年間水素生産量</td>
<td>土/年</td>
<td>10,232</td>
<td>10,232</td>
<td>24,304</td>
</tr>
<tr>
<td>年間変動費合計</td>
<td>百万円</td>
<td>2,399</td>
<td>1,971</td>
<td>17,792</td>
</tr>
<tr>
<td>年間設備費</td>
<td>百万円</td>
<td>13,757</td>
<td>1,421</td>
<td>18,923</td>
</tr>
<tr>
<td>年間労務費</td>
<td>百万円</td>
<td>280</td>
<td>40</td>
<td>280</td>
</tr>
<tr>
<td>年間固定費合計</td>
<td>百万円</td>
<td>14,037</td>
<td>1,461</td>
<td>19,203</td>
</tr>
<tr>
<td>変動費計</td>
<td>仟/MJ</td>
<td>0.23</td>
<td>0.19</td>
<td>0.73</td>
</tr>
<tr>
<td>固定費設備</td>
<td>仟/MJ</td>
<td>1.34</td>
<td>0.14</td>
<td>0.78</td>
</tr>
<tr>
<td>固定費労務</td>
<td>仟/MJ</td>
<td>0.03</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>固定費計</td>
<td>仟/MJ</td>
<td>1.37</td>
<td>0.14</td>
<td>0.79</td>
</tr>
<tr>
<td>合計計</td>
<td>仟/MJ</td>
<td>1.61</td>
<td>0.34</td>
<td>1.52</td>
</tr>
<tr>
<td>原料起源 CO₂年間排出量</td>
<td>仟ton/y</td>
<td>212</td>
<td>-</td>
<td>471</td>
</tr>
<tr>
<td>原料起源設備</td>
<td>仟ton/y</td>
<td>30</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>原料起源 CO₂年間排出量</td>
<td>g/MJ</td>
<td>21</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>原料起源設備</td>
<td>g/MJ</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
3.5 製造水素の湾岸部へのパイプライン輸送
3.4 節で製造した水素を湾岸部のアンモニア合成プラントおよび液化水素プラントにパイプライン輸送する。パイプライン出口圧が2MPa以上になる条件でパイプ呼び径を決定した。また、輸送距離は、80kmとした。表3-5-1にパイプライン輸送諸元を示す。輸送コストとCO₂排出量を表3-5-2に示す。

<table>
<thead>
<tr>
<th>表 3-5-1 パイプライン輸送諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>輸送距離</td>
</tr>
<tr>
<td>パイプスケジュール</td>
</tr>
<tr>
<td>パイプ呼び径</td>
</tr>
<tr>
<td>圧縮送入圧</td>
</tr>
<tr>
<td>パイプライン出口圧</td>
</tr>
<tr>
<td>CompPower</td>
</tr>
<tr>
<td>Comp機器コスト</td>
</tr>
<tr>
<td>パイプ機器コスト</td>
</tr>
<tr>
<td>機器重量合計</td>
</tr>
<tr>
<td>輸建設費</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 3-5-2 輸送コストとCO₂排出量</th>
</tr>
</thead>
<tbody>
<tr>
<td>パイプライン</td>
</tr>
<tr>
<td>変動費（MJ）</td>
</tr>
<tr>
<td>固定費設備</td>
</tr>
<tr>
<td>固定費労務（MJ）</td>
</tr>
<tr>
<td>CO₂排出量（原料・用役起源）</td>
</tr>
<tr>
<td>CO₂排出量（設備起源）</td>
</tr>
<tr>
<td>原料・用役起源</td>
</tr>
<tr>
<td>設備起源</td>
</tr>
<tr>
<td>合計（g/MJ）</td>
</tr>
</tbody>
</table>
原料水素のコストおよびCO₂排出量は、水素製造工程とバイプラン工程の合計である。表3-5-3に原料水素のコストとCO₂排出量を示す。

<table>
<thead>
<tr>
<th>工程</th>
<th>区分</th>
<th>Unit</th>
<th>褐炭</th>
<th>澄青炭</th>
</tr>
</thead>
<tbody>
<tr>
<td>水素製造工程（CCS含む）</td>
<td>変動費</td>
<td>【円/MJ】</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>固定費</td>
<td>【円/MJ】</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>【円/MJ】</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>バイプラン工程</td>
<td>変動費</td>
<td>【円/MJ】</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>輸送工程</td>
<td>固定費</td>
<td>【円/MJ】</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>原料水素コスト合計</td>
<td></td>
<td>【円/MJ】</td>
<td>2.0</td>
<td>1.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CO₂排出量</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>水素製造工程（CCS含む）</td>
<td>原料・用役起源</td>
<td>【g-CO₂/MJ】</td>
</tr>
<tr>
<td></td>
<td>設備起源</td>
<td>【g-CO₂/MJ】</td>
</tr>
<tr>
<td></td>
<td>合計</td>
<td>【g-CO₂/MJ】</td>
</tr>
<tr>
<td>バイプラン工程</td>
<td>原料・用役起源</td>
<td>【g-CO₂/MJ】</td>
</tr>
<tr>
<td>輸送工程</td>
<td>設備起源</td>
<td>【g-CO₂/MJ】</td>
</tr>
<tr>
<td>原料水素CO₂排出量合計</td>
<td></td>
<td>【g-CO₂/MJ】</td>
</tr>
</tbody>
</table>

3.6 液化水素方式（方式1）によるコストとCO₂排出量の算出

液化水素方式は液化水素プラントで水素を液化し、隣接する出荷基地において低温常圧タンクに貯蔵した液化水素を輸送タンカーに積込み、11,000kmを海上輸送し、受入基地で荷降ろし、低温常圧タンクに貯蔵するまでのプロセスを検討した。各プロセスでのボイルオフはゼロとした（5章で検討）。タンカーの主機関は、C重油を燃料としたディーゼル機関（現実技術）と輸送する水素を燃料に、発電機で作った電力を使用した電気モーター駆動方式（将来技術）とした。受入基地で使用する電力は、12円/kWh（現実技術）および水素発電で作った電力（将来技術）とした。以下個別のプロセスの説明を行う。
3.6.1 製造プラント

液化水素製造プラントの諸元を表 3-6-1 に示す。表 3-6-1 中の液化エネルギーは液化水素 1kg を製造するに必要な電力で、理論値は 3.92kWh/kgH₂ である。しかし、実際のプラントでは 10 ～ 14 kWh/kgH₂ 程度の値である[7]。現状技術ベースでは 10 kWh/kgH₂、将来の技術開発を見通し、将来技術ベースでは 7 kWh/kgH₂ とした[8]。

表 3-6-1 液化水素製造プラント諸元

<table>
<thead>
<tr>
<th>プラント諸元</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産量 50【ton/d/系列】</td>
<td>250【ton/d/系列】</td>
<td></td>
</tr>
<tr>
<td>液化エネルギー 10【kWh/H₂/kg】</td>
<td>7【kWh/H₂/kg】</td>
<td></td>
</tr>
<tr>
<td>機器費合計 6,800【百万円】</td>
<td>19,000【百万円】</td>
<td></td>
</tr>
<tr>
<td>総建設費 13,600【百万円】</td>
<td>38,000【百万円】</td>
<td></td>
</tr>
<tr>
<td>機器重量合計 963【ton】</td>
<td>2,970【ton】</td>
<td></td>
</tr>
<tr>
<td>年間使用電力 150【GWh】</td>
<td>526【GWh】</td>
<td></td>
</tr>
<tr>
<td>要員 8【名】</td>
<td>8【名】</td>
<td></td>
</tr>
<tr>
<td>変動費（円/MJ） 0.62</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>固定費（円/MJ） 1.12</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>人件費（円/MJ） 0.02</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>CO₂排出量用（g-CO₂/MJ） 9.2</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>CO₂排出量設備（g-CO₂/MJ） 1.4</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

3.6.2 液化水素出荷基地

製造した液化水素は低温常圧の貯蔵タンクに蓄えられ、ポンプにより 4 基のローディングアームを通じて 2 日間でタンカーに積み込まれる。表 3-6-2 に液化水素出荷基地の諸元を示す。液化水素は沸点 253℃ であり蒸発するが、液化水素貯蔵タンクは現時点でもボイルオフ率 0.1%/d [10] を実現している。建設費は LNG 貯蔵タンク建設費から推算した。

表 3-6-2 液化水素出荷基地諸元

<table>
<thead>
<tr>
<th>出荷基地諸元</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>出荷タンク 真空パーキャン断熱タンク 10,000【m³】 40 基</td>
<td>積層真空断熱タンク 100,000【m³】 3 基</td>
<td></td>
</tr>
<tr>
<td>設備費 124,000【百万円】</td>
<td>建設費 44,000【百万円】</td>
<td></td>
</tr>
<tr>
<td>フィードポンプ 質量流量 11【ton/h/基】 効率 0.7</td>
<td>質量流量 45【ton/h/基】 効率 0.7</td>
<td></td>
</tr>
<tr>
<td>設備費 900【百万円】</td>
<td>設備費 2,000【百万円】</td>
<td></td>
</tr>
<tr>
<td>ローディングアーム 液化水素用マリンローディングアーム 4 基</td>
<td>液化水素用マリンローディングアーム 4 基</td>
<td></td>
</tr>
<tr>
<td>設備費 660【百万円】</td>
<td>設備費 660【百万円】</td>
<td></td>
</tr>
<tr>
<td>使用電力 7.5【円/kWh】</td>
<td>現状技術と同じ</td>
<td></td>
</tr>
<tr>
<td>1,11【g-CO₂/kWh】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>機器重量合計 21,000【ton】</td>
<td>8,200【ton】</td>
<td></td>
</tr>
<tr>
<td>総建設費 127,000【百万円】</td>
<td>49,000【百万円】</td>
<td></td>
</tr>
<tr>
<td>要員 8【名】</td>
<td>8【名】</td>
<td></td>
</tr>
</tbody>
</table>
3.6.3 液化水素タンカー輸送

表 3-6-3 に液化水素タンカーの諸元を示す。タンカーの船速は、LNG 船の新造船価とその積載重量の国土交通省のデータ[11]を基に計算した。また、航続速度は現状技術ベースでは 30km/h、将来技術ベースでは 40km/h とし、その時の航行時機関出力は、おのおのおの 6,000kW, 32,000kW とした[12,13]。

<table>
<thead>
<tr>
<th>液化水素タンカー諸元</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>タンカー輸送距離（km）</td>
<td>11,000</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>タンカー数</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>使用燃料</td>
<td>C 重油を燃料に使用</td>
<td>LH2 を燃料に使用</td>
</tr>
<tr>
<td>積載重量</td>
<td>2,200【トン-LH2】 タンク容積：35,000【m³】</td>
<td>8,700【トン-LH2】 タンク容積：140,000【m³】</td>
</tr>
<tr>
<td>往復の航海日数</td>
<td>36【日】（荷揚げ 2 日、荷降ろし 2 日を含む）</td>
<td>28【日】（荷揚げ 2 日、荷降ろし 2 日を含む）</td>
</tr>
<tr>
<td>員数</td>
<td>8 名/隻</td>
<td>48名/隻</td>
</tr>
<tr>
<td>総建設費</td>
<td>200,000【百万円】</td>
<td>88,000【百万円】</td>
</tr>
<tr>
<td>総設備重量</td>
<td>220,000【トン】</td>
<td>150,000【トン】</td>
</tr>
<tr>
<td>年間使用燃料</td>
<td>100,000【トン-C 重油】</td>
<td>33,000【トン-LH2】</td>
</tr>
</tbody>
</table>

3.6.4 液化水素受入基地

受入基地の構成は出荷基地と同様とした。プロセスフロー図（PFD）を図 3-6-1 に示す。輸送された液化水素はポンプにより 4 基のローディングアームを通して 2 日間でタンカーから液体の状態で貯蔵タンクに蓄えられる。表 3-6-4 に液化水素受入基地の諸元を示す。

図 3-6-1 液化水素受入基地 PFD
表 3-6-4 液化水素受入基地諸元

<table>
<thead>
<tr>
<th>液化水素受入基地諸元</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>受入れタンク</td>
<td>真空パラライト断熱タンク
10,000 [m²] 30基
建設費 124,000【百万円】</td>
<td>積層真空断熱タンク
100,000 [m²] 3基
建設費 44,000【百万円】</td>
</tr>
<tr>
<td>フィードポンプ</td>
<td>質量流量 11 [ton/h/基] 効率 0.7
設備費：900【百万円】</td>
<td>質量流量 45 [ton/h/基] 効率 0.7
設備費：2,000【百万円】</td>
</tr>
<tr>
<td>ローディングアーム</td>
<td>液化水素用マリンローディングアーム 4基
設備費：660【百万円】</td>
<td>液化水素用マリンローディングアーム 4基
設備費：660【百万円】</td>
</tr>
<tr>
<td>使用電力</td>
<td>12 【円/kWh】、600【g-CO₂/kWh】</td>
<td>H₂発電による電力使用</td>
</tr>
<tr>
<td>機器重量合計</td>
<td>21,000【ton】</td>
<td>8,200【ton】</td>
</tr>
<tr>
<td>総建設費</td>
<td>127,000【百万円】</td>
<td>49,000【百万円】</td>
</tr>
<tr>
<td>要員</td>
<td>8 名</td>
<td>8 名</td>
</tr>
</tbody>
</table>

表 3-6-5、表 3-6-6 に方式1 のコストと CO₂排出量の計算結果を示す。

表 3-6-5 液化水素方式（方式1）による国内発電所への輸送コスト

<table>
<thead>
<tr>
<th>プロセス</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>変動費【円/MJ】</td>
<td>固定費【円/MJ】</td>
</tr>
<tr>
<td>液化水素プラント</td>
<td>0.62</td>
<td>1.14</td>
</tr>
<tr>
<td>液化水素出荷基地</td>
<td>0.0</td>
<td>0.70</td>
</tr>
<tr>
<td>液化タンカー輸送</td>
<td>0.28</td>
<td>0.98</td>
</tr>
<tr>
<td>液化水素受入基地</td>
<td>0.0</td>
<td>0.70</td>
</tr>
<tr>
<td>変動費・固定費合計</td>
<td>0.9</td>
<td>3.50</td>
</tr>
<tr>
<td>合計【円/MJ】</td>
<td>4.4</td>
<td>2.00</td>
</tr>
</tbody>
</table>

表 3-6-6 液化水素方式（方式1）による CO₂排出量

<table>
<thead>
<tr>
<th>プロセス</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂排出量【g-CO₂/MJ】</td>
<td>CO₂排出量【g-CO₂/MJ】</td>
</tr>
<tr>
<td>液化水素プラント</td>
<td>9.2</td>
<td>1.4</td>
</tr>
<tr>
<td>液化水素出荷基地</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>液化タンカー輸送</td>
<td>13.7</td>
<td>2.0</td>
</tr>
<tr>
<td>液化水素受入基地</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>用役・設備合計</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>合計【g-CO₂/MJ】</td>
<td>29</td>
<td>9</td>
</tr>
</tbody>
</table>
4. 製造水素のアンモニア変換と海上輸送

4.1 アンモニア合成方式（方式2）によるコストとCO₂排出量の算出

原料水素は3.1節で示したプロセスで製造される。その原料水素を用いてアンモニア合成方式（方式2）はHaber法（現状技術）および低圧法（将来技術）でアンモニアを合成し、隣接する出荷基地において低温圧タンクで貯蔵したアンモニアを輸送タンカーに積込み、11,000kmを海上輸送し、日本の受入基地で荷降ろし、低温圧タンクで貯蔵するプロセスである。各プロセスでのボイルオフはゼロとした。また、タンカーの主機関は、C重油を燃料としたディーゼル機関（現状技術）と、輸送するアンモニアを燃料に、発電機で発電した電力を使用した電気モータ駆動方式（将来技術）とした。アンモニア合成および出荷基地で使用する電力単価は7.5円/kWh、CO₂排出量は111g-CO₂/kWhとした。受入基地で使用する電力は、12円/kWh（現状技術）およびアンモニア発電で作った電力（将来技術）とした。以下、個別プロセスの詳細説明を行う。

4.1.1 アンモニア合成

現状技術ベースではアンモニア合成はHaber法（20MPa、450℃）で行い、そのPFDを図4-1-1に示す。将来技術ベースでは低圧法（1MPa、340℃）で行い、そのPFDを図4-1-2に示す。
アンモニア反応工程の条件を表4-1-1に示す。
また表4-1-2にアンモニア合成プラント諸元をまとめた。

![図4-1-1 アンモニア合成（Haber法）PFD](image-url)
図4-1-2 アンモニア合成（低圧法）PFD

表4-1-1 アンモニア反応工程諸元

<table>
<thead>
<tr>
<th>反応工程諸元</th>
<th>現状技術（Haber法）</th>
<th>将来技術（低圧法）</th>
</tr>
</thead>
<tbody>
<tr>
<td>触媒</td>
<td>Fe系触媒 ライフ：5〜8年触媒単価 1,500円/kg</td>
<td>Ru系触媒 ライフ：5年触媒単価 27,000円/kg</td>
</tr>
<tr>
<td>反応条件</td>
<td>450℃ 20MPa（反応器中NH₃濃度：14%）</td>
<td>340℃ 1MPa（反応器中NH₃濃度：8%）</td>
</tr>
<tr>
<td>NH₃合成速度</td>
<td>SV=10,000/hr (NH₃濃度 14vol%)触媒 31.5m²</td>
<td>SV=13,000/hr (NH₃濃度 8vol%)触媒 63m²</td>
</tr>
</tbody>
</table>
表 4-1-2 アンモニア合成プラント諸元

<table>
<thead>
<tr>
<th>アンモニア合成プラント諸元</th>
<th>現状技術（Haber 法）</th>
<th>将来技術（低圧法）</th>
</tr>
</thead>
<tbody>
<tr>
<td>生産量</td>
<td>1,300 [ton/d/基] 3 基</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>機器コスト合計</td>
<td>7,600【百万円/基】</td>
<td>6,100【百万円/基】</td>
</tr>
<tr>
<td>機器重量合計</td>
<td>2,200【ton/基】</td>
<td>1,500【ton/基】</td>
</tr>
<tr>
<td>原料水素単価</td>
<td>2【円/MJ】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>アンモニア製造原単位</td>
<td>0.176【kg-H2/kg-NH3】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>使用電力</td>
<td>7.5【円/kWh】.111【g-CO2/kWh】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>要員</td>
<td>5 名/直+1 名</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>総建設費</td>
<td>69,000【百万円】</td>
<td>55,000【百万円】</td>
</tr>
<tr>
<td>変動費（円/MJ）</td>
<td>0.21</td>
<td>0.09</td>
</tr>
<tr>
<td>固定費（円/MJ）</td>
<td>0.43</td>
<td>0.39</td>
</tr>
<tr>
<td>人件費（円/MJ）</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>CO2 排出量</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>用役（g-CO2/MJ）</td>
<td>0.4</td>
<td>0.2</td>
</tr>
</tbody>
</table>

設定したプロセスは図 4-1-1、図 4-1-2 に示したように、アンモニア合成後、反応ガスの熱回収を行ったあとガス中の NH3 を冷却にて凝縮させ気液分離し、未反応ガスは反応器にリサイクルする。凝縮 NH3 を気化し、膨張弁でジェールトムソーン効果も利用しながら冷凍機で再冷却し、製品 NH3 を製造する。

4.1.2 アンモニア出荷基地

設定したプロセスの PFD を図 4-1-3 に示す。製造したアンモニアは液体の状態で貯蔵タンクに蓄えられ、ポンプにより 4 基のローディングアームを通じて 2 日間でタンカーに積み込まれる。表 4-1-3 にアンモニア出荷基地の諸元を示す。貯蔵タンクは七尾国家石油ガス備蓄基地のデータ [9]を参考に算定した。
表 4-1-3 アンモニア出荷基地諸元

<table>
<thead>
<tr>
<th>アンモニア出荷基地諸元</th>
<th>現状技術 / 将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>出荷タンク</td>
<td>平底円筒二重設タンク（金属）</td>
</tr>
<tr>
<td></td>
<td>120,000m³</td>
</tr>
<tr>
<td></td>
<td>建設費 9,000【百万円】</td>
</tr>
<tr>
<td>フィードポンプ</td>
<td>流量 0.23m³/s 效率 0.7 設備費：12【百万円】</td>
</tr>
<tr>
<td>ローディングアーム</td>
<td>アンモニア用マリンローディングアーム 4基</td>
</tr>
<tr>
<td></td>
<td>設備費：220【百万円】</td>
</tr>
<tr>
<td>使用電力</td>
<td>7.5【円/kWh】 .111【g-CO₂/kWh】</td>
</tr>
<tr>
<td>機器重量合計</td>
<td>7,700【ton】</td>
</tr>
<tr>
<td>総建設費</td>
<td>9,450【百万円】</td>
</tr>
</tbody>
</table>

4.1.3 アンモニアタンカー輸送

表 4-1-4 にアンモニアタンカーの諸元を示す。タンカーの主機関は、C 重油を燃料としたディーゼル機関（現状技術）と輸送するアンモニアを燃料に、発電機で発電した電力を使用する電気モータ駆動方式（将来技術）とした。このときのアンモニア発電の効率は 0.53 とした。タンカーの船舎は、LPG 船の新造船舎とその積載重量の国土交通省のデータ[11]を参考に推算した。また、ボイルオフはなしとした。航行速度は現状、将来技術ベースいずれも 30km/h とし、その時の航行時機関出力は、12,000kW とした[12]。

表 4-1-4 アンモニアタンカー諸元

<table>
<thead>
<tr>
<th>アンモニアタンカー諸元</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>タンカー輸送距離片道</td>
<td>11,000【km】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>タンカー数</td>
<td>2</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>使用燃料</td>
<td>C 重油を燃料に使用</td>
<td>NH₃を燃料に使用</td>
</tr>
<tr>
<td>積載重量</td>
<td>63,000【ton-NH₃】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td></td>
<td>タンク容積：110,000【m³】</td>
<td></td>
</tr>
<tr>
<td>往復の航海日数</td>
<td>36【d】（荷揚げ 2 日、荷降ろし 2 日を含む）</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>要員</td>
<td>35 名/隻</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>総建設費</td>
<td>18,000【百万円】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>総設備重量</td>
<td>120,000【ton】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>年間使用燃料</td>
<td>46,000【ton-C 重油】</td>
<td>82,000【ton-NH₃】</td>
</tr>
</tbody>
</table>
4.1.4 アンモニア受入基地

受入基地の構成は出荷基地と同じとした。PFDを図4-1-4に示す。
輸送されたアンモニアはポンプにより4基のローディングアームを通して2日間でタンカーから液体の状態で貯蔵タンクに蓄えられる。表4-1-5にアンモニア受入基地の諸元を示す。貯蔵タンクは七尾国家石油ガス備蓄基地のデータ[9]を参考に算定した。

表4-1-6、表4-1-7に方式2のコストとCO₂排出量の計算結果を示す。

<table>
<thead>
<tr>
<th>アンモニア受入基地諸元</th>
<th>現状技術</th>
<th>将来技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>受け入れタンク</td>
<td>平底円筒二重殻タンク（金属）120,000m³ 2基建設費9,000【百万円】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>フィードポンプ</td>
<td>流量0.23m³/s 効率0.7設備費:12【百万円】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>ローディングアーム</td>
<td>アンモニア用マリンローディングアーム4基設備費：220【百万円】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>使用電力</td>
<td>7.5【円/kWh】111【g-CO₂/kWh】</td>
<td>NH₃発電による電力使用</td>
</tr>
<tr>
<td>機器重量合計</td>
<td>7,700【ton】</td>
<td>現状技術に同じ</td>
</tr>
<tr>
<td>総建設費</td>
<td>9,450【百万円】</td>
<td>現状技術に同じ</td>
</tr>
</tbody>
</table>
5. 方式 1, 2 による最終利用時点でのトータルコストと CO₂排出量の比較

海外（豪州）において、褐炭ガス化プロセス（CCS を含む）により製造されたカーボンフリー水素を二つの方式で最終利用する国内発電所に輸送した場合の現状技術ベースと将来技術ベースのトータルコストと CO₂排出量を表 5-1～表 5-4 に示す。また、各プロセスのコストと CO₂排出量比較を表 5-5 に示す。表 5-1、表 5-2 中の「原料水素」のコスト（円/MJ）と CO₂排出量（g/MJ）は、NH₃製造原単位（NH₃を 1MJ 製造するために必要な水素量で 1.145MJ-H₂/MJ-NH₃）に基づき計算したアノニア 1MJ あたりの値である。

表 5-5 は最終利用時点でのトータルコストと CO₂排出量の計算結果を示す。この表と原料水素のコストと CO₂排出量の計算結果を示した表 5-3 より、変動費に関しては、ほとんどが原料水素の製造コストであることが分かる。また、CO₂排出量も原料用役起源に関しては、多くが原料水素の製造工程で発生したものであることが分かる。現状技術ベースでは、液化水素方式では CO₂排出量が 54g-CO₂/MJ となり、天然ガスを直接燃焼した場合の CO₂排出量である 56g/MJ とほぼ同程度の高い値になることが分かった。また、現状および将来技術ベースで両方式を比較すると（図 5-1, 図 5-2）、最終利用時点での、コストおよび CO₂排出量ともアノニア方式の方が有利である。まず、将来技術ベースの両方式のコスト差について考察する。プロセス別のコストを示した図 5-2 から、液化水素もしくはアノニア合成のコストは、液化水素 3.7 円/MJ に対してアノニアは 2.9 円/MJ であり、その差は 0.8 円/MJ である。
表 5-1 アンモニア方式の各プロセスのトータルコストと CO \textsubscript{2} 排出量（現状技術ベース）

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>原料水素</th>
<th>U600</th>
<th>U640</th>
<th>U650</th>
<th>U660</th>
</tr>
</thead>
<tbody>
<tr>
<td>変動費（MU）</td>
<td>[円/MU]</td>
<td>0.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>固定費設備（MU）</td>
<td>[円/MU]</td>
<td>1.8</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>固定費労務（MU）</td>
<td>[円/MU]</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計（MU）</td>
<td>[円/MU]</td>
<td>2.3</td>
<td>0.6</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

CO \textsubscript{2} 排出量（原料・用役起源） [ton/y] = 575,000, 51,000, 90, 169,000, 500 合計
CO \textsubscript{2} 排出量（設備起源） [ton/y] = 105,000, 8,600, 8,800, 27,000, 8,800
原料・用役起源 [g/MJ] = 24.0, 1.9, 0.0, 7.1, 0.0
設備起源 [g/MJ] = 4.6, 0.4, 0.4, 1.1, 0.4
合計 [g/MJ] = 28.6, 2.3, 0.4, 8.2, 0.4
エネルギー効率（物流工程） [ratio] = 1.00, 0.99, 1.00, 0.919

アンモニア到達量（年間） [ton/y] = 1,281,205, 1,281,205, 1,199,100, 1,198,937
電力相当換算 [ton/y] = 0, 163, 1,198,937
燃料分 [ton/y] = 111,897
ボイルオフ分 [ton/y] = 0, 0, 0, 23.6

表 5-2 アンモニア方式の各プロセスのトータルコストと CO \textsubscript{2} 排出量（将来技術ベース）

<table>
<thead>
<tr>
<th>Description</th>
<th>Unit</th>
<th>原料水素</th>
<th>U600</th>
<th>U640</th>
<th>U650</th>
<th>U660</th>
</tr>
</thead>
<tbody>
<tr>
<td>変動費（MU）</td>
<td>[円/MU]</td>
<td>0.5</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>固定費設備（MU）</td>
<td>[円/MU]</td>
<td>1.9</td>
<td>0.4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>固定費労務（MU）</td>
<td>[円/MU]</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計（MU）</td>
<td>[円/MU]</td>
<td>2.4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

CO \textsubscript{2} 排出量（原料・用役起源） [ton/y] = 575,000, 12,000, 0, 0, 0 合計
CO \textsubscript{2} 排出量（設備起源） [ton/y] = 105,000, 6,000, 9,000, 27,000, 9,000
原料・用役起源 [g/MJ] = 25.7, 0.5, 0.0, 0.0, 0.0
設備起源 [g/MJ] = 4.9, 0.2, 0.4, 1.2, 0.4
合計 [g/MJ] = 30.6, 0.7, 0.4, 1.2, 0.4
エネルギー効率（物流工程） [ratio] = 1.00, 0.94, 1.00, 0.936

NH\textsubscript{3} 到達量（年間） [ton/y] = 1,281,205, 1,281,205, 1,199,100, 1,198,937
電力相当分 [ton/y] = 0, 163, 1,198,937
燃料分 [ton/y] = 82,104
ボイルオフ分 [ton/y] = 0, 0, 0, 22.3
表 5-3 液化水素方式の各プロセスのトータルコストとCO₂排出量（現状技術ベース）

<table>
<thead>
<tr>
<th>液化水素方式（現状技術）</th>
<th>Description</th>
<th>Unit</th>
<th>原料水素</th>
<th>US300</th>
<th>US330</th>
<th>US340</th>
<th>US350</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>変動費（円/MJ）</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.4</td>
</tr>
<tr>
<td>固定費設備（円/MJ）</td>
<td>1.6</td>
<td>1.1</td>
<td>0.7</td>
<td>0.9</td>
<td>0.7</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>固定費労務（円/MJ）</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>合計（円/MJ）</td>
<td>2.0</td>
<td>1.7</td>
<td>0.7</td>
<td>1.3</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>6.4</td>
</tr>
</tbody>
</table>

CO₂排出量（原料・用役起源）	[ton/y]	575,000	251,000	140	374,000	370
CO₂排出量（設備起源）	[ton/y]	105,000	38,000	32,000	56,000	32,000
取得工費（原料・用役起源）	[g/MJ]	21.0	9.0	9.0	13.7	0.0
建設工費（設備起源）	[g/MJ]	4.0	1.4	1.2	2.0	1.2
合計（g/MJ）	[g/MJ]	25.0	10.6	1.2	15.7	1.2

表 5-4 液化水素方式の各プロセスのトータルコストとCO₂排出量（将来技術ベース）

<table>
<thead>
<tr>
<th>液化水素方式（将来技術）</th>
<th>Description</th>
<th>Unit</th>
<th>原料水素</th>
<th>US300</th>
<th>US330</th>
<th>US340</th>
<th>US350</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>変動費（円/MJ）</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>固定費設備（円/MJ）</td>
<td>1.9</td>
<td>0.6</td>
<td>0.0</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td>3.4</td>
</tr>
<tr>
<td>固定費労務（円/MJ）</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>合計（円/MJ）</td>
<td>2.4</td>
<td>1.3</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>4.8</td>
</tr>
</tbody>
</table>

CO₂排出量（原料・用役起源）	[ton/y]	575,000	175,000	140	0	9
CO₂排出量（設備起源）	[ton/y]	105,000	8,000	13,000	47,000	13,000
取得工費（原料・用役起源）	[g/MJ]	24.6	7.5	0.0	0.0	0.0
建設工費（設備起源）	[g/MJ]	4.7	0.3	0.5	2.0	0.5
合計（g/MJ）	[g/MJ]	29.3	7.8	0.5	2.0	0.5

表 5-5 2つの方式の最終利用時点でのトータルコストとCO₂排出量の比較

<table>
<thead>
<tr>
<th>両方式の比較</th>
<th>現状技術ベース</th>
<th>将来技術ベース</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>アンモニア方式</td>
<td>液化水素方式</td>
</tr>
<tr>
<td></td>
<td>変動費： 2.7</td>
<td>変動費： 2.9</td>
</tr>
<tr>
<td></td>
<td>固定費： 0.7</td>
<td>固定費： 3.5</td>
</tr>
<tr>
<td></td>
<td>合計 ： 3.4</td>
<td>合計 ： 6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂排出量【g/MJ】</td>
<td>原料用役起源： 38</td>
<td>原料用役起源： 48</td>
</tr>
<tr>
<td></td>
<td>設備起源 ： 2</td>
<td>設備起源 ： 6</td>
</tr>
<tr>
<td></td>
<td>合計 ： 40</td>
<td>合計 ： 54</td>
</tr>
</tbody>
</table>
低炭素社会実現に向けた政策立案のための提案書

技術開発編 石炭ガス化による水素、アンモニアの経済性と CO2 排出量
平成 31 年 2 月

図 5-1 現状技術各プロセスのコスト

図 5-2 将来技術各プロセスのコスト

液化水素方式では液化水素プラントのコストが約 80%を占めているが、そのうち原料水素の「原料水素」のコストが 2.4 円/MJ で、約 65%である。2.4 円/MJ のうち 1.9 円/MJ が固定設備費である。よって褐炭ガス化プラント（CCS を含む）は設備の低コスト化が大きな技術課題である。アンモニア方式でもアンモニア合成プラントのコストが 90%以上であり、そのうち原料水素の「原料水素」のコストが 2.4 円/MJ で、80%以上である。

また、貯蔵・輸送については、出荷基地と受入基地のコストはほぼ貯蔵タンクの建設費に依存する。2 つのプロセスでコスト差は 0.4 円/MJ であり、タンカー輸送の差も 0.4 円/MJ である。よ
って、液化水素方式の場合、陸上の貯蔵タンクおよび輸送用の貯蔵タンクの建設費を抑えることが必要である。技術課題としては安価で断熱効果の高い断熱材やタンク構造の開発および極低温にも耐える安価なタンク材料の開発が挙げられる。

また、アンモニア方式と液化水素方式のプロセス毎の CO₂排出量の比較を図 5-3（現状技術ベース）および図 5-4（将来技術ベース）に示す。図 5-4 から、両方式の CO₂排出量の差は 7g-CO₂/MJ であり、図 5-4 より液化水素もしくはアンモニア合成終了までの CO₂排出量は、液化水素 37g-CO₂/MJ に対しアンモニアは 31g-CO₂/MJ であり、排出量のほとんどが原料水素で発生している。

![図 5-3 現状技術各プロセスの CO₂排出量](image1)

![図 5-4 将来技術各プロセスの CO₂排出量](image2)
「原料水素」の CO₂排出量のうち 21g-CO₂/MJ が原料用役起源である（表 3-5-3）。褐炭ガス化の際発生する CO₂の捕集率が 0.88 であり、捕集できなかった残りが原料用役起源の排出量である。カーボンフリー燃料の実現には、CO₂の捕集率を 100%近くに上げる技術の開発が必要である。

次に液化水素およびアンモニアのボイロオフに関して考察する。液化水素は常圧で沸点が -253℃、アンモニアが-33.3℃である。よって貯蔵時や輸送時には断熱材からの熱流入によりボイロフが発生する。しかし、本報告ではボイロフ率が使用する断熱材や構造により大きく変化するため、微少量と見なし零としてコスト計算を行った。液化水素方式のボイロフを考慮した場合のコスト差を検討する。液化水素のボイロフ率を貯蔵時 0.1%/d [14]、タンカー輸送時 0.18%/d とし、ボイロフガスの再液化は行わないものとしてコスト計算した結果を表 5-6 に示す。

表 5-6 ボイロフを考慮した場合のコストと CO₂排出量

<table>
<thead>
<tr>
<th>ボイロフを考慮した場合</th>
<th>U300</th>
<th>U330</th>
<th>U340</th>
<th>U350</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料水素</td>
<td>575,000</td>
<td>175,000</td>
<td>140</td>
<td>9</td>
</tr>
<tr>
<td>CO₂排出量（原料用役起源）</td>
<td>105,000</td>
<td>8,000</td>
<td>13,000</td>
<td>47,000</td>
</tr>
<tr>
<td>合計</td>
<td>38</td>
<td>4</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>絕対エネルギー率</td>
<td>0.97</td>
<td>0.95</td>
<td>1.00</td>
<td>0.825</td>
</tr>
</tbody>
</table>

この結果を表 5-4 と比較すると最終利用時点でのコストと CO₂排出量がボイロフを考慮した場合 4.9 円/MJ、42g-CO₂/MJ となりボイロフを零とした場合の 4.8 円/MJ、40g-CO₂/MJ との差は小さいことが分かれる。原因はボイロフ量が一番多く発生する「液化水素タンカー輸送」において、ボイロフガスを全て燃料に利用できることである。

6. 結論

海外産炭地での CCS を伴う石炭ガス化プロセスにより製造された水素を、液体燃料（液体水素ならびにアンモニア）に変換した後、タンカーにて国内の基地に海上輸送し、最終利用時点でのコストと CO₂排出量について検討した結果、以下ことがわかった。

1) CCS プロセスの CO₂捕集率を 88%にて検討したが、アンモニア、水素ともに、国内発電所入力にて、将来技術ベースで約 40g/MJ の CO₂排出量となり、これは天然ガスを直接燃焼した場合の CO₂排出量である 56g/MJ に対して、約 70%相当の高い値であることが分かった。カーボンフリー燃料の実現には、99%以上の高い捕集性能を有する低コスト CCS プロセスの開発が必要である。最終利用時点でのコストと CO₂排出量および CCS の捕集性能の詳細に関して、今後検討を進める予定である。
2）原料の種類（褐炭、瀝青炭）による、水素製造コストとCO₂排出量への影響は少ないことが分かった。
3）アンモニア方式はコストが将来技術ベースで3.2円/MJ、CO₂排出量が33g-CO₂/MJ、液化水素方式はコストが4.8円/MJ、CO₂排出量が40g-CO₂/MJであり、価格とCO₂負荷の点から、発電用燃料としてのアンモニアの可能性が示された。

参考文献
石炭ガス化による水素、アンモニアの経済性と
CO₂排出量
—石炭ガス化（CCSを含む）による
水素、アンモニア製造・物流システムの比較検討—
平成31年2月

Economy of Hydrogen and Ammonia by Coal Gasification and CO₂ Emissions:
Study on Production and Logistics of Hydrogen and Ammonia by Coal Gasification with CCS
Strategy for Technology Development,
Proposal Paper for Policy Making and Governmental Action
toward Low Carbon Societies,
Center for Low Carbon Society Strategy,
Japan Science and Technology Agency,
2019.2