

Technology evaluation of zero-carbon power generation systems in Japan in terms of cost and CO₂ emissions

Toshihiro Inoue, Koichi Yamada

Center for Low Carbon Society Strategy,

Japan Science and Technology Agency

2019 4th International Conference on Green Energy Technology

Outline

Introduction

Technology issues toward zero CO₂ emission power generation system.

Methodology

RE tech. scenarios and optimal multi-regional power generation model.

- Results and discussions
- Conclusions

CO₂ emissions in Japan by sectors (2013 FY)

Energy consumption: 1.37 GJ/y

Power generation: 1,090 TWh/y

CO₂ emission from energy sector in Japan 1.24 Gt-CO₂/y

Platform for Design & Evaluation of LCT ("Modeling Tool")

Automated process design support system developed by LCS.

Multi-regional power generation model

Grid system and the issues

- Short term:
 Governor Free,
 LFC (Load frequency control)
- Long term: hourly, seasonal
- Grid system stability

(a generator is considered synchronized to the grid)

Prospects of PV System Cost mono-crystalline Silicon (Yen/W) Important R & D items for solar cell (module efficiency 200 future bright system 17%, wafer thickness 180µm) Thinner Si-wafer by new slicing tech (13%)**New thin film** CIGS tandem by high speed process 150 Thin-film Organic, Perovskite etc. Organic compound tandem costs compound $(20\%, 150 \,\mu\,\mathrm{m})$ (15%)**Current status** semiconductor ♦ Improved existing tech. PV installed solar cell (15%) $(20\%,100 \,\mu \,\mathrm{m})$ | O Future product (CIGS) 100 Modul Cost (18%) $(20-25\%, 50 \mu \text{ m})$ Org. mat. tandem (25%) 50 **Stand** (30%)**Compound tandem Power conditioner** 0 **Future** 2010 2020 2015 2025 2030

RE technology scenarios

110Yen = 1\$

	Capacity factor*	Power Cost [Yen/kWh]		
Case,		А	В	С
Technology level**		Tech.2015	Tech.2020	Tech.2030
PV	11%	16.0	9.5	5.7
Wind	23%	14.1	10.2	8.4
Geothermal	70%	12.5	12.5	8.0
Geothermal HDR*	70%	-	-	6.9
Biomass	70%	33.6	10.9	10.9
Hydro	54%	10.8	10.8	10.8
Battery (system cost)	-	19 Yen/Wh	10 Yen/Wh	6 Yen/Wh

^{*}The capacity factors are calculated within the model. Standard capacity factors are used to estimate power cost that shows in this table.

^{**}A Tech level 2015; current technology, B Tech level 2020; improving technology, C Tech level 2030; developing technology

^{***}HDR: Hot dry rock geothermal power is optional technology

Result

Relationship between CO₂ reduction potential and power demand

- Effect of inertia force power ratio on CO₂ reduction rate -

Max. reduction of CO₂ emissions (Based on 2013) HDR: Hot dry rock geothermal power

ICGET 2019, July 16-18 Rome, Italy	LCS	-
Power Cost, zero CO ₂ emission (Inertia regulation	50%,	25%)

Power Cost, zero CO ₂ emission (Inertia regulation 50%, 25%)						
Case	Case		1	2	3	4
Power demand (TWh/y)		990	1000	800	1000	
Inertia fraction			50%	25%	25%	
CO ₂ reduction		565 Mt- CO2/y	80%	100%	100%	100%
Generation Power (TWh/y)	Nuclear power	0	130	0	0	0
	Hydro power	94	0	130	130	130
	LNG	285,697	317	0	0	0
	Coal,Oil	697	0	0	0	0
	PV	9	0	595	555	692
	Wind power	5	524	402	344	559
	Geothermal	1	211	12	12	12
	Geothermal (HDR)	_	12	0	100	0
	Biomass	_	31	22	31	29
	Total	1190	1,225	1,160	1,172	1,422
H ₂ G	eneration (TWh/y)	_	51	67	9	106
Batte	ery output(TWh/y)	_	227	252	294	242
Battery Cap (GWh)		_	801	821	983	809

11.7

14.3

11.1

16.5

12.9

Gene. Cost (¥/kWh)

Power Cost, zero CO₂ emission (Inertia regulation 25%)

Cooo		5	7	8	
Case		<u> </u>	1	<u> </u>	
Power demand (TWh/y)		1200			
Inertia fraction		25%			
CO ₂ reduction		100%	98%	90%	
(h/y)	Nuclear power	0	0	0	
	Hydro power	130	130	130	
	LNG	0	32	159	
/er	PV	592	673	672	
Generation Power(TWh/y)	Wind power	509	537	441	
	Geothermal	12	12	12	
atio	Geothermal (HDR)	200	100	0	
ler?	Biomass	31	30	30	
Ger	Total	1,465	1,514	1,443	
H ₂ Ge	neration (TWh/y)	24	43	29	
Battery output(TWh/y)		156	297	308	
Battery Cap (GWh)		643	920	1,013	
Gene. Cost (¥/kWh)		12.1	12.9	11.7	

To construct a CO₂ zero-emission power generation system

- 1. Large-scale introduction of renewable energy, in particular, solar cell technology (30% eff.) to reduce plant area.
- 2. Storage batteries: 500 to 1000 GWh in order to alleviate shortand medium-term fluctuations and to integrate daily operations.
- 3. Electricity grid system reinforcement by at least 10 times the current level in order to use renewable energy in rural area.
- 4. The inertial force constraint has the greatest influence on power generation cost. Set the fraction of the electricity supply provided by inertial generators to 25%(half of the current).
- 5. Reduce power demand. On the other hand, when the demand for electricity increases, the introduction of a stable power source of 100 to 200 TWh (such as HDR) is indispensable.

Thank you for your attention

Center for Low Carbon Society Strategy,
Japan Science and Technology Agency

https://www.jst.go.jp/lcs/