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Low carbon and zero carbon electric power (ZC electricity) supply configurations were examined by way of simulating a power
supply configuration model, aiming for the economical supply of electricity in 2030 and in 2050. The simulation result showed
that it may be possible to supply electricity, at a level below current electricity costs, to meet demand of about 1,700 TWh/y
when CO, emissions derived from electricity generation fuel in 2030 are reduced by 50% compared to 2013, and of about
1,400 TWh/y when the CO, emissions are reduced by 70%. Furthermore, even if for an electricity demand of 1,600 TWh/y in
2050, it may be feasible to construct economical ZC electricity generation configurations. Moreover, an analysis of capital
investments showed that, by increasing the reduction of fossil-fuel CO, emissions in 2030, the total amount of new capital
investments from 2021 through 2029 may be increased by about 20,000 to 40,000 billion JPY.

Table 1 Parameters used for the electricity generation
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.posals for PO"CV Developm- configuration model in this proposal
®m Towards the achievement of ZC electricity in the future, i e 20|30 = [ o 2:50
photovoltaic (PV) and wind power will become the mainstay, Costlevel fyaar] 2025 2030
and their market sizes will increase. It is important to develop Reduction of fossi-fuel CO, emissians [%] compared to 2013 3 50 | 70 | 100
PV and wind power industries strategically considering the Lower limitof inertial force ratio %] 5 | 50 25 25
expansion of domestic markets in the future. Upper limit of electricity demand [TWh/y]* 2125 | 2,085 | 1,705 | 1385 | 2,770
® While a high demand for storage batteries is expected, the LNG electricity generation Yes No
cost of lithium-ion battery is estimated to rise due to depletion Nuciear powsrgencraion Yeert Na No
of lithium resource. Therefore, an inexpensive and efficient bl s = = e
technology that can recycle lithium and promote new power _ PVpolentalloWl o 1369
storage technology, and the policy to realize large-scale power Wl e L = =
storage systems are required. [GW] ° ®
Floating offshore wind power generation potential [GW] 0 538
1. Power su pp|y Conﬁg uration and power cost Biomass power generation endowment [TWh/y] 34 40
ca Icu |at|0n New pumped storage power generation potential [GW] 0 282
Llnear programm|ng methOd was Used tO determlne Hot dry rock geothermal power generation potential [GW] 0 21.7
a power supply configuration that minimizes the _ o o e
generation cost by using input data of electricity Relffo_memmmf "?tl_gr_reglon"Ensmlssmnemwk - - e - — e :
. N *Upper limit of electricity demand that can be achieved with CO, reduction and inertia constraints
demand per hour in a typ|Ca| day for every season at in each case (confirmed in increments of 5 TWh/h)
every region in Japan. Table 1 shows the parameters T oome were calculated with "No*. N ‘ N
for the power supply conﬂguratlon model. Table 2 Table 2 Electricity generatggncé?gtaiglﬁyc%r:%gb(érggcr;gcrl\tsy cost for typical electricity

shows the power supply configuration breakdowns — " | 5 | = A
and costs for typical cases of power demand. For the o— P P S
2030 cases of A, C, and D, the electricity cost was Rate of reduction of CO, emissions
|Ower than the electricity COSt in 2018 (139 frompowerger:sr;t)igfuelcompared 36% 50% 70% 100%
JPY/kWh [1]). For the 2050 case of E, the electricity Electricity demand [TWhiy] 1,107 |1,000[1,200[1,600] 1,800t 200"{1,000( 1,200}t 600 1,000|1,200[1,385| 1,000/t 600 2,000
cost was 15 JPY/kWh including the transmission cost NuclearPower | 62 | 0 | 0 | 0 149 — | — | — | —| -] - | -] - || -
for the electricity demand of 1,000 TWh/y, about the z il gplerj@mle| ol =] —|—]=]=]=]=f=~]=
same as |n 2018 E Existing LNG 110 | 277 | 376 | 355 | 356 | 285 | 292 |251 | 238 | 230 | 199 = = =
-‘E‘ Newly-established LNG — | 273 | 337 | 559 | 580 | 580 | 443 | 440 |480 | 204 | 210 | 240 | - = =
Table 3 Six scenarios of electricity generation configuration until 2050 % T—— o lisz | 82 ez | vz | ezl ez | =z Iz | oz | 52 | 6z | o2 oz | 2
Electricity demand Reduction of fossil- 8 PV Power 65 |209 [ 373 | 536 | 636 [ 656 | 214 | 393 |648 | 401 | 579 | 671 | 491 [1,1491,363
Scenario Lase [TWh/y] el Ef)%%qgjsuons § Wind power (onshore) | 11 | 29 | 35 | 119| 186 |296| 0 | 36 |221| 119 | 165 | 284 | 443 | 558 | 558
2030 2050 2030 | 2050 | 2030 | 2050 & [wingpowercofishore) [ - [ - [ - [ -] - [-[ - -[-[-]-]-]es[em]ses
1 A 36 E Geothermal power 2 1M 1 1M 1 1 11 1M 1 1M 11 1 | 111 [ 111 111
2 C 1,000 | 1,000 50 & Woody biomasspower | 20 | 0 | 0 [ 0 | o [21] o | 0o |o | o | o |28|53]|50] 35
2 E‘ E ;g 100 Total 1,162|1,050|1,262|1,693({2,008|2,0101,044 (1,263 1,702 1,064 (1,287|1,525|1,256[2,16§2,727
5 [@ 1,200 1,600 50 = Storage battery — [ 72 | 90 [132]| 177 [209| 10 | 83 [240| 140 [ 249 | 297 | 176 (385 | 423
6 D 70 §§ Pumping-uppower | 10 | 0 [0 o | o | 2] o o |1 o] 1] 8 [es]|247]370
Table 4 Amounts of new capital investments from 2021 == NHsTurbine i I At Mt I At M i Mt i M Mt R o
through 2049 [1,000 billion JPY] Storage battery facility capacity[GWh])| — | 265 | 316 [ 463 | 618 822 | 141 | 313 |865| 500 | 889 |1,145| 521 [1,211/1,357
Electric generation cost [JPY/kWh] | 13.9 |10.0(10.3|10.9| 11.4 [11.6| 10.7 | 10.7 |11.6| 11.4 |12.0| 13.0| 13.0 [15.0( 16.6
Scenario 1 2 3 4 5 6 Electricity transmission cost[JPY/kWh] 1.0 | 06 |07 (06| 06 07| 05| 06 |07 | 0.7 |08 | 08| 16 [2.0]| 1.9
LNG 12 14 9 15 15 12 *Including petroleum, etc.
** Calculated assuming no nuclear power operation
P_V 20 |13 |26 |26 | 27 | 4L 2. Changes in capital investments and CO, emissions
2021 - F\,’gwgr 2 0 12 8 3 18 Based on the electricity power supply configuration given in Table 2, the
2029 [Storage| o 3 11 . E 19 amounts of new capital irjvestmen_ts and COz_ emissions unti_l _2050 were
Battery calculated for each scenario assuming a combination of electricity demand
Others| 0 0 0 0 0 0 and fuel CO, emission reduction rate (Table 3). Comparing the total
Subtotal| 41 | 31 | 60 | 51 | 53 | 91 amounts of capital investments until 2049 (Table 4), the total amounts of
LNG | o 0 0 0 0 0 capital investments for scenarios 3 and 6 in which the fossil-fuel CO,
emissions are reduced by 70% in 2030, were about 1.1 to 1.2 times those
P_V 2% |29 | 24 | 56 | 56 | 96 for the scenarios of 1 and 4, in which the fossil-fuel CO, emissions are
2030 - F\,’g\',;‘gr 40 | 40 | 40 | 64 | 64 | 64 reduced by 36%, respectively. This means that related markets may be
2049 [Storage| ;g 9 11 | 22 | 22 | 25 high.ly activated b_y increasing the reduction of C(_)2 emiss_ions. Although _the
Battery fossil-fuel CO, emissions are assumed to be zero in 2050 in these scenarios,
Others| 31 | 31 | 31 | 53 | 53 | 53 CO, emissions associated with facility construction remain, suggesting that
Subtotal| 104 | 104 | 105 | 194 | 194 | 197 it becomes more important to develop technologies to suppress facility
Total 145 | 135 | 166 | 245 | 247 | 288 construction CO, emissions in the industrial fields towards the realization of

ZC electricity.
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