# 研究報告書

「ワイドギャップ酸化物における界面機能開発」 研究期間: 平成 20 年 10 月~平成 24 年 3 月 研究者: 須崎 友文

1, 研究のねらい

MgO、Al<sub>2</sub>O<sub>3</sub> などの二元系ワイドギャップ酸化物を用いて急峻な界面構造を作製し、 自発的な電子状態の再構成により、マクロスケールでの界面導電相の実現を目指しまし た。デバイス応用の観点からは、本研究は絶縁体界面をチャンネル層とした、新しい超 薄型トランジスタの開発を念頭に置いています。学術的には、酸化物が陽イオン、陰イ オンから形成されていることと、ナノスケールでの界面制御の両者を組み合わせること で、どこまで非バルク的な物性を実現できるかという、きわめて基本的な問題が念頭に あります。

2, 研究成果

(1)(111)-配向した MgO 人工薄膜の作製

二元系ワイドギャップ酸化物の不安定極性面の代表 例である MgO(111) に着目し、さまざまな基板上にレ ーザーアブレーション法により平坦表面を持つ MgO(111) 薄膜の堆積を試みた。MgO は天然へき開 面である (100) 面が陽イオン、陰イオンの数のバラン スが取れているために安定であるのに対し、(111) 面 は原子スケールで平坦化するとすべて陽イオン、ある いは陰イオンとなるため、静電的にきわめて不安定と 考えられる。実験の結果、図1の反射高速電子回折 (RHEED)の強度振動が示すように、YSZ(111) 基板上に NiO(111) バッファ層を介することで MgO(111) 薄膜 の layer-by-layer 成長が実現し、原子スケールで平坦 な MgO(111) 面が酸化物基板上にはじめて形成され た (K. Matsuzaki, H. Hosono, and <u>T. Susaki</u>, Phys. Rev. B **82**, 033408 (2010) )

ー般に、MgO(111) 薄膜は、レーザーアブレーショ ン法だけではなく、MBE による成長の報告も複数存 在する。本研究では、レーザーアブレーションに用い るレーザーのエネルギーを大きく変化させて Al<sub>2</sub>O<sub>3</sub>(0001) 基板上への MgO(111) 膜の堆積を行った。 図2に示すように、MgO(111) 表面はレーザーエネ ルギーの増加により平坦化され、このような不安定 表面の形成に、レーザーアブレーション法の膜成長



図 1 NiO バッファを介した YSZ(111) 基板上への MgO(111) 薄膜成長時の RHEED 振動。



図2 MgO(111)/Al<sub>2</sub>O<sub>3</sub>(0001) 薄膜の 表面粗さのレーザーエネルギー依存 性。



のエネルギースケールが有効であることを明らかにした(S. Kumada, K. Matsuzaki, H. Hosono, and <u>T. Susaki</u>, Jpn. J. Appl. Phys. **50**, 085503 (2011). )。

MgO(111) 薄膜が、より標準的な MgO(100) 薄膜と構造的にどのような違いがあるかは、 SrTiO<sub>3</sub>(111) および SrTiO<sub>3</sub>(100) 基板上に MgO(111) および (100) 薄膜を作製して比較を 行った(K. Matsuzaki, H. Takagi, H. Hosono, and <u>T. Susaki</u>, Phys. Rev. B **84**, 235448 (2011) )。

(2) 導体において、位置を固定された陽イオンのフレームワークに対し、自由に移動できる電子はわずかに固体外部へ染み出しているため、導体の最表面は染み出た電子のために

マイナスに、(電子が出て行った)陽イオンの フレームワークの最表面はプラスに帯電して いる。その結果、一般に導体表面には表面垂 直方向に電気双極子モーメントが存在し、そ の分表面の仕事関数はバルクの仕事関数の値 からずれている。ここで、(111)面とは対照 的にきわめて安定と考えられる (100) 面を 持つ MgO 薄膜は、絶縁体表面としては際立 って安定と考えられる。この面は導体との界 面においても絶縁性を強固に保つことを利用 し、導体表面に MgO(100) 膜を堆積することで表 面仕事関数の変調を行った。実験は、レーザーア ブレーション法で作製した試料表面を大気にさら すことなくケルビンプローブにより仕事関数を測 定することにより行った。図3に示すように、製 膜槽の酸素分圧と堆積させる MgO(100) 薄膜の 厚みにより、Nb:SrTiO<sub>3</sub>(100) 基板表面の仕事関 数が大きく変調できることを明らかにした ( <u>T.</u> Susaki, A. Makishima, and H. Hosono, Phys. Rev. B 83, 115435 (2011) )

一方、酸化物絶縁体においては、膜成長方向 に分極が存在するものが知られている。絶縁体 堆積による表面仕事関数の変調が、絶縁体に含 まれる分極によりさらにどのように制御される かは極めて興味深い。本研究では、膜成長方向 に明確な分極が積層すること、また基板表面の 終端面制御により分極の向きを反転できることが 知られているワイドギャップ酸化物である LaAlO<sub>3</sub>(100) 膜を SrTiO<sub>3</sub>(100) 基板上に堆積させ、 仕事関数の変化を調べた。その結果、図4に示す ように、TiO<sub>2</sub> 終端 SrTiO<sub>3</sub>(100) 基板上に LaAlO<sub>3</sub>



図3 製膜槽の酸素分圧を変化させ た際の Nb:SrTiO<sub>3</sub>(100) 表面の仕 事関数の MgO(100) 薄膜堆積依存 性。



図4 SrTiO<sub>3</sub>(100) 基板の TiO<sub>2</sub> およ び SrO 終端面に LaAlO<sub>3</sub> を堆積 させた際の仕事関数の変化。



を堆積させることで、仕事関数は 2 eV 以上減少し、最終的に 2.2 eV というきわめて低 い仕事関数が実現することが分かった。このようなふるまいは、SrTiO<sub>3</sub>(100) 基板の終端面 を SrO に変更して LaAlO<sub>3</sub> を堆積させると、TiO<sub>2</sub> 終端面での結果とは全く異なり、比較 的低い仕事関数が LaAlO<sub>3</sub> の厚みによらずに観察され、14 unit cell 程度の LaAlO<sub>3</sub> 堆積に より不連続にさらに仕事関数低減が見られることが分かった。

さらに、TiO<sub>2</sub> 終端面での LaAlO<sub>3</sub> 堆積依存性については、導電性 Nb:SrTiO<sub>3</sub> 基板に直 接 LaAlO<sub>3</sub> 膜を堆積させた際の仕事関数の変化と、Nb:SrTiO<sub>3</sub> 基板上に絶縁性 SrTiO<sub>3</sub> バッ ファを成長させた上に LaAlO<sub>3</sub> 膜を堆積させた際の仕事関数の変化の比較を行った(図5)。 その結果、LaAlO<sub>3</sub> 膜を堆積させる前の SrTiO<sub>3</sub> 基板表面の仕事関数は、絶縁性のものの方 が高いものの、LaAlO<sub>3</sub> 膜を堆積させた後には絶縁性のものの方が低くなることが分かっ た。このように、絶縁性 SrTiO<sub>3</sub> の仕事関数の方が LaAlO<sub>3</sub> 膜の堆積に大きく依存する様子 は、図6に示したように、Nb:SrTiO<sub>3</sub> 基板では多くのキャリヤが再構成前から存在し、 LaAlO<sub>3</sub> 膜の分極をある程度は打ち消しているものの、絶縁性 SrTiO<sub>3</sub> の場合は界面付近に 大量の電荷が誘起される必要があり、表面付近の電子系の LaAlO<sub>3</sub> 膜堆積依存性も大きく なると考えると理解できることが分かった。



図 5 導電性を持った Nb:SrTiO<sub>3</sub>(100) 基板に直 接、およびこの基板上に絶縁 性 SrTiO<sub>3</sub> バッファを堆積させ た後に LaAlO<sub>3</sub> 膜を堆積さ せた際の仕事関数の変化。



図6 さまざまな LaAlO<sub>3</sub>/SrTiO<sub>3</sub>(100) 界面のバ ンド模式図。(左)電荷の再構成が起こらないと 仮定した LaAlO<sub>3</sub>/SrTiO<sub>3</sub> 界面。(中央)電荷の 再構成が起こった LaAlO<sub>3</sub>/SrTiO<sub>3</sub> 界面。(右) 電荷の再構成が起こった LaAlO<sub>3</sub>/Nb:SrTiO<sub>3</sub> 界 面。

3, 今後の展開

ストイキオメトリーの調整が比較的単純であることを利用し、またこれまで多くのノウ ハウを蓄積してきた MgO との格子マッチングを考慮し、NiO、Fe<sub>3</sub>O<sub>4</sub> などの二元型酸化 物を利用した人工構造を作製し、デバイス機能の開発と新規界面状態の探索を行う。

4, 自己評価

二元系ワイドギャップ酸化物において代表的な分極面である MgO(111) 面をオール酸



化物構造ではじめて実現した。ただし、分極の効果を利用することでマクロスケールで の導電相を引き出し、新しいチャンネル層を得るという狙いは実現しなかった。分極を 持たない MgO(100) 薄膜、また分極を持つ LaAlO<sub>3</sub>(100) 薄膜の堆積により、導体表面 の仕事関数が大きく変調できることを見出したことは、機能性ということでは着目され ることの少ないワイドギャップ酸化物において、界面を利用して機能を開拓したという 点で、本課題「ワイドギャップ酸化物における界面機能開発」の趣旨に合った成果であ ると言える。

### 5, 研究総括の見解

須崎研究者は、LaAIO3/ SrTiO3 界面に生じた界面導電相の先行研究にヒントを得て、絶 縁体界面をチャンネル層とした新しい超薄型トランジスタの開発を念頭において、より単純な 極性材料である MgO、Al<sub>2</sub>O<sub>3</sub> などの二元系ワイドギャップ酸化物を用いて急峻な界面構造を 作製し、自発的な電子状態の再構成による界面導電相の実現を目指しました。この目的のた め、不安定極性をもった (111)配向した MgO 人工薄膜の作製に取り組みました。さまざまな 基板上にレーザーアブレーション法により平坦表面を持つ MgO(111)薄膜の堆積を試み、 YSZ(111)基板を用い、NiO(111) バッファ層を介することで MgO(111)薄膜の layer-by-layer 成長を実現し、原子スケールで平坦な MgO(111) 面を世界ではじめて形成することに成功し ました。分極の効果を利用することによってマクロスケールな界面導電相を引き出し、新しい チャンネル層を得るという狙いは実現しませんでしたが、(111)MgO の平坦な界面を得る技術 は、今後の酸化物エレクトロニクスの発展に大きな波及効果をもつと考えられます。「原子スケ ールで表面平坦な MgO(111)薄膜の作製方法」として特許出願したことは、本研究の大きなア ウトカムとして評価できます。

その後、須崎研究者は、LAO/STO 界面の界面導電相における仕事関数の制御可能性に 研究の軸足を移し、LaAIO3 をSrTiO3(100) 基板のTiO2 終端面上に堆積するかSrO 終端面 に堆積させるかで仕事関数が大きく変化することを見いだしました。一部アドバイザからは、あ くまで当初目的に沿って、粘り強く研究を続けるべきではなかったかという厳しいコメントもあり ますが、機能性ということでは着目されることの少ないワイドギャップ酸化物において、界面を 利用して仕事関数を制御するという機能を開拓した点はある程度評価できると思います。

## 6, 主な研究成果リスト

### (1)論文(原著論文)発表

- <u>T. Susaki</u>, S. Kumada, T. Katase, K. Matsuzaki, M. Miyakawa, and H. Hosono, "Fabrication of Flat MgO(111) Films on Al<sub>2</sub>O<sub>3</sub>(0001) Substrates by Pulsed Laser Deposition", Appl. Phys. Express 2, 091403 (2009).
- K. Matsuzaki, H. Hosono, and <u>T. Susaki</u>, "Layer-by-layer epitaxial growth of polar MgO (111) thin films", Phys. Rev. B 82, 033408 (2010).
- 3. <u>T. Susaki</u>, A. Makishima, and H. Hosono, "Tunable work function in MgO/Nb:SrTiO<sub>3</sub> surfaces studied by Kelvin probe technique", Phys. Rev. B **83**, 115435 (2011).
- 4. <u>T. Susaki</u>, A. Makishima, and H. Hosono, "Work function engineering via



LaAlO<sub>3</sub>/SrTiO<sub>3</sub> polar interfaces", Phys. Rev. B 84, 115456 (2011).

5. K. Matsuzaki, H. Takagi, H. Hosono, and <u>T. Susaki</u>, "Structural study of polar MgO (111) epitaxial thin films grown on SrTiO<sub>3</sub> (111)", Phys. Rev. B **84**, 235448 (2011).

# (2)特許出願 研究期間累積件数:3件 発明者: 須崎友文、松崎功佑、細野秀雄 発明の名称: 原子スケールで表面平坦な MgO(111)薄膜の作製方法 出願人: JST 出願日: 2010/7/9

(3)その他の成果(主要な学会発表、受賞、著作物等)

招待講演: Tomofumi Susaki, "Fabrication of MgO(111) Polar Filims by Pulsed Laser Deposition" (3<sup>rd</sup> International Congress on Ceramics, 2010 年 11 月)

