2024 年度年次報告書

時空間マルチスケール計測に基づく生物の復元あるいは多様化を実現する機構の解明 2024 年度採択研究代表者

久保田 茜

奈良先端科学技術大学院大学 先端科学技術研究科 助教

温度変動を起点とした季節性花成応答の復元と多様化の分子基盤

研究成果の概要

野外環境に生育する植物は、季節や昼夜の周期的変動に加え、天候による突発的な環境スト レスにも適応する必要がある。移動能力を持たない植物は、多様な環境シグナルから季節情報を 正確に「復元」するとともに、季節に応じて生理応答を「多様化」させることで適応進化を遂げてきた。 栄養成長から生殖成長への転換である開花応答(花成)の最適化は、こうした「復元と多様化の二 面性」を併せもつ生命力である。実験室環境では花成制御の分子メカニズムが一定程度明らかに されてきたが、自然界のような複雑な野外環境での制御機構は未解明な点が多い。そこで本研究 では、実験室で野外環境を単純化し再構成する手法を用いて、日内の温度変動を起点とした花 成制御機構の解明を目指す。特に、花成ホルモンをコードする FT 遺伝子の発現とその輸送に対 する温度の影響を多面的に解析し、温度と時間情報に基づく制御機構の分子基盤とその適応的 意義を明らかにする。2024 年度は、温度を介した FT の転写制御の解明を進めた。温度変動下で FT 発現を促進する複数の転写因子を同定し、これらがタンパク質複合体を形成する可能性を見 出した。遺伝学的解析の結果、転写因子間の相互作用によって FT の転写活性がやや低下する 傾向が確認されたが、その効果は限定的であった。一方、これらの因子が結合すると予想される FT 近傍のエンハンサー領域をゲノム編集により欠失させた株では、FT の高温誘導性が低下し花 成が遅延した。興味深いことに、FT 転写開始点上流だけでなく 3'UTR より下流のエンハンサーを 欠失した株でも高温応答性が鈍化する傾向が認められた。これらのの結果から、転写因子が*FT*近 傍に散在する複数のエンハンサーに結合しクロマチン構造を変化させることで、FT の転写が活性 化する可能性が示唆された。