2024 年度年次報告書 計測・解析プロセス革新のための基盤の構築 2023 年度採択研究代表者

梅田 健一

金沢大学 ナノ生命科学研究所 特任助教

AI 駆動による高速 AFM 計測・解析の自動化

研究成果の概要

これまで、.NET Framework 上に構築した高速 AFM 制御ソフトにおいて、分子認識の実現を目的として YOLOv5 の導入を進めてきた。推論時に Python 呼び出しが必要な場合、オーバーヘッドによってリアルタイム性が損なわれるため、事前に PyTorch で学習させたモデル(.pt ファイル)を ONNX 形式に変換し、AFM イメージング中に ONNX Runtime を用いて推論を行うことで、高速な処理を実現している。しかし、.NET Framework の更新は 2022 年に終了しており、最新の YOLO11 を使用するには、.NET 8 への移行が必要であることが判明した。そこで、分子認識およびカンチレバー光学オートアラインメントの精度・速度向上を目的として、ソフト全体を.NET 8 へ移植し、YOLO11 への対応を行った。YOLO11 を用いた分子認識機能として、インスタンスセグメンテーションによる分子同定、分子トラッキング機能の追加、および異なるイメージングスケールへの対応などを実現した。さらに、高速 AFM では、カンチレバーが従来 AFM に比べて 10 倍以上小型なため、XY 方向に加えて Z 方向のフォーカス調整も必要であり、これまで熟練者による手動調整が求められていた。これを自動化するため、YOLO11 とピエゾ慣性アクチュエーターを用いた光学アライメント機構を開発した。まず、YOLO の confidence に基づいて光学像のオートフォーカスを行い、その後、カンチレバーをレーザー位置に移動させ、受光量が最大となるよう XYZ 方向の位置調整を最適化する処理を実装した。

【代表的な原著論文情報】

1) Kenichi Umeda (1st), Karen Kamoshita, and Noriyuki Kodera: Physical Review Applied, 22, 034065 (2025).