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Figure 2

Deduced amino acid sequence and domain
organization of Eve-1. (A), amino acid
sequence of Eve-1. A total of 767 amino acids
were deduced from the open reading frame of
Eve-1a, and a 23-amino acid insert is present
in Eve-1b. Predicted SH3 domains are boxed,
and seven proline-rich motifs that bind SH3
domains are underlined. (B), schematic
representation of Eve-1 isoforms.
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Figure 3. Knockdown of Eve-1 by siRNA.
(A), RT-PCR analysis. cDNAs prepared
from HT1080 cells (Scramble-siRNA- or
Eve-1-siRNA-transfected cells) were
amplified by PCR using primer pair specific
for Eve-1. (A), immunoblot analysis. Lysates
from HT1080 cells (Scramble-siRNA- or
Eve-1-siRNA-transfected cells) were
immunoblotted using anti-Eve-1 antibody.
The mixture of recombinant Eve-1a, Eve-1b,
Eve-1c, and Eve-1d expressed in HT1080
cells was used as a positive control. (C),
expression of proHB-EGF-AP on the
surface of transfected
HT1080/HB-EGF-AP/AT1 or
HT1080/HB-EGF-AP cells. Cell surface
biotinylation and immunoprecipitation by
anti-HB-EGF antibody (H1) were carried
out.

(D), effect of Eve-1 on the shedding of proHB-EGF. Activity of AP in conditioned media of
HT1080/HB-EGF-AP/AT1 or HT1080/HB-EGF-AP cells transfected with siRNA was measured



after incubation with 100 nM angiotensin Il or 100 nM TPA for 30 min at 37 < C, respectively.
Values represent means == S.D. (n=4). *, p< 0.001 for the difference between Scramble
versus Eve-1-siRNA with angiotensin Il or TPA.
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Figure 4. proHB-EGF is shed during the G1 phase. (A

and B) HT1080/HB-EGF-AP cells were synchronized

= " em™ s in G1/S phase with aphidicolin and released by
lw' T lln qu changing medium to normal culture medium (the time

! P T TR T = point of release was designated as 0 h). (A), cells were
LR | LB L8 |&F stained with propidium iodide (Pl) and analyzed by

) 1 LA l A 1 : FACS to determine their DNA content and cell cycle

| phase. (B), to minimize the influence of serum
gu-s' = " stimulation, time course of the medium change was

A

designated as described under the part. The AP activity
40 04 &8 812 12-16 16-20 2024 -serum () was obtained as explained above. The HB-EGF-AP was
“ =+ 4+« « w w = = significantly higher in the conditioned media at -4 to 0 h,
— W when cells were in G1/S phase of cell cycle. (C and D),
- assessment of the cell surface proHB-EGF quantity
—— — during cell cycle phase by FACS. Cell surface
Cir o proHB-EGF was stained with an antibody against the
. ' : N-terminus of proHB-EGF (#H6) followed by labeling
with FITC. DNA content of cells was determined with PI
staining. (C), cells were gated into four cell cycle
phases (early G1, late G1, S, and G2/M phase)
according to their DNA content. (D), the logarithmic
histograms of FITC intensity of respective cells are
shown individually. As negative control, only the
secondary antibody was added to the fixed cells. Cell
surface proHB-EGF was the lowest in the late G1
phase when compared to cells in other cell cycle
phases.

Figure 5. Timing of endogenous proHB-EGF cleavage

A am e and endogenous PLZF translocation to cytoplasm in
[ | ' human keratinocytes. Keratinocytes were stained and

E . : i 1 7 e e analyzed by the LSC system. (A), keratinocytes stained
i { Loy with #H1 (a) or anti-PLZF antibody (b) and with Pl were
§ ! : B "~ scanned and categorized into five different cell cycle
E ] i phases. Approximately 3,000 cells in (a) and 16,000 cells
et in (b) were scanned, respectively. (B), representative
images of the respective groups. HB-EGF showed the
distinct localization during each phase of the cell cycle:
pericentriolar (al, arrow heads) and interzonal (al,
arrow) in late M phase, plasma membranous and
cytoplasmic in G1 phase (a2), nucleus in S and G2
phases (a3 and a4), and pericentriolar in early M phase
(ab, arrows). PLZF localized to the nucleus in the G1
phase (b2) and began to translocate into the cytoplasm
in the S phase (b3), with completion of cytoplasmic
translocation in the G2 phase to late M phase (b1, 4,
and 5). PLZF nuclear translocation was assessed in
each group of cells and was present in 76 of 100 cells in
G1 phase, 73 of 100 cells in S phase, and 10 of 100 cells




in G2 phase. Nuclear localization of PLZF was greater
during early S phase, and cytoplasmic localization of
PLZF was greater during the late S phase.
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Figure 6. c-myc gene expression analyses.
Upper left: RNA protection assay analysis of
c-myc mRNA expression in HB** and HB-
cells by RPA. Serum-starved MEFs were
stimulated with 10 ng/ml EGF for 1 hr. The
expression of GAPDH mRNA was examined as
a control. Lower left: Quantitative PCR
analysis of c-myc mRNA expression induced by
EGF in HB** and HB™~ cells. Upper right: RNA
protection assay analysis of c-myc
transcription induced by bFGF and PDGF in
HB** and HB~- cells. Serum-starved MEFs
were stimulated with 1 ng/ml bFGF or 10 ng/ml
PDGF for 1 hr. The expression of GAPDH
mRNA was examined as a control. Upper left:
Quantitative PCR analysis of c-myc mRNA
expression induced by bFGF and PDGF in HB*/*
and HB™~ cells.

~[giume Figure 7. EGFR  and  FGFR

signaling-induced cell cycle progression
by expression of proHB-EGF and an
uncleavable mutant in HB~~ cells. Flow
cytometry analysis of cell cycle
progression was carried out at appropriate
time after EGF or bFGF stimulation. All
experiments were performed
independently in triplicate.
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Figure 8. A schematic diagram for the proposed role of HB-EGF-CTF signaling in c-Myc
transcription induced by growth factor receptor activation.
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() HB-EGF
Pro. Natl Acad Sci. US.A. 100, 3221-3226, 2003 Hb-egf '/ Tie-2
Cre Hb-egf
SM-22 Cre Hb-egr
(Figure 9) (Biochem.
Biophys. Res. Commun. 350, 315-321, 2006) HB-EGF-CTF
HB-EGF soluble HB-EGF
shedding
proHB-EGF ucproHB-EGF
HB-EGF HB-EGF-CTF

(J

Cell Biol. 163, 469-475, 2003)

Figure 9. Left panel: Hematoxylin and eosin staining of the longitudinal sections of the newborn
(P1) heart valves. Histological sections show semilunar (A, B, E and F) and atrioventricular (C, D,
G and H) valves. In SM22a-Cre:HB-/- (B and D) and TIE2-Cre:HB-/- (F and H) mice, the valves
were enlarged when compared with SM22a-Cre;HB+/- (A and C) and TIE2-Cre;HB+/- (E and G)
mice. The valves are indicated with arrowheads. Right panel. Cardiac hypertrophy of the
conditional knockout mice. Transverse sections of the hearts (A-D) and heart weight-to-body
wet weight ratios (E and F) of 12-week-old mice. Values represent means + SD. Massive
enlargement of the heart was observed in SM22a.-Cre:HB-/- and TIE2-Cre:HB-/- mice when
compared with the control mice.
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(J. Cell Biol. 151, 209-219, 2000) Hb-egf'™/°x
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Figure 10. Impaired wound healing in HB-/-mice. Two 6-mm punch biopsies were made in the
skin of the backs of HBlox/lox and HB-/-mice, and wound diameter was monitored. (A),
macroscopic view of wound healing assay in HBlox/lox and HB-/-mice at day 8. (B),
measurements of wound diameter during healing. */~<0.05.

Figure 11. Impaired keratinocyte migration in HB-/-mice. (A), serial sections were prepared, and
the epidermis was stained with anti-keratin antibody. Computer-assisted morphometric analysis
was performed and the ratio of the leading edge to initial wound length was calculated. (B),
immunohistochemical staining of wound healing assay at day 7. Scale bar: 500 pam. (C),
measurements of leading edge ratio in HBlox/lox and HB-/-mice. The leading edge ratio was
significantly decreased in HB-/-mice (/=9) at day 7. */<0.01.
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