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てんかんの患者数は100⼈〜200⼈に⼀⼈の割合（⽇
本てんかん学会） 

世界の患者数は5000万⼈を超える（WHO） 

途上国で患者の割合が⾼い
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⼩児と⾼齢者の発症率が⾼い
出典：⽇本神経治療学会治療指針作成委員会編集「標準的神経治療：⾼齢発症てんかん」

てんかんと認知症との関連性：アルツハイマー型認知症の⾼齢者の約20％がてんかん発作を
併発するという報告もある
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Covid-19

• Covid-19は脳症を引き起こ
し，てんかん状態を呈する場合
が報告 

• ハイリスク患者の脳波モニタリ
ングに診断に効果．

a. Initial rapid-EEG on the first patient 
showing 2−3 Hz bifrontal predominant 
spike and wave discharges. 

b. Conventional EEG showing improvement 
after starting on anti-seizure medications, 
with generalized rhythmic delta activity 
(GRDA) and occasional generalized periodic 
discharges (GPDs) at mostly 0.5−1 Hz. 

Chen+, Seizure (Oct. 2020)
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脳波判読は診断に⽋かせない
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脳波の判読⽀援AIの必要性
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脳波 診断レポート

専⾨医は脳波の翻訳家
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判読には何年ものトレーニングが必要

慢性的な専⾨家不⾜ 

専⾨医は全国で689名（2019年現在）

紫：専⾨医が5⼈以下の県

データは⻑⼤・膨⼤ 

頭蓋内脳波で数週間，最低
でも2⽇〜3⽇間，40〜128
チャンネルにわたるデータ

判読の⾃動化⽀援
技術が必要不可⽋



7

機械判読がなかなか⾃動化できない訳
① パターンマッチングが難しい

従来のマッチングでは spike-and-wave と認識できない

③ 公開脳波データ及び適切なラベルの圧倒的不⾜
CHB-MIT Corpus （23例）
TUH EEG Seizure Corpus（2017年公開）

⑤ アノテーションの問題

④ データ共有の難しさ

collaboration

Approval

Approval
倫理，データフォーマット

専⾨家と時間の確保

② 脳波は時間変化する空間データ
⼤量のノイズ・アーチファクト．ミクロ・マクロの切り分けの難しさ．



脳波診断⽀援AIの加速化は必須

■ 実⽤化の進む臨床⽤AI 
■ 放射線科：胸部X線，CT画像等 
■ 病理学：細胞組織検査，DNA検査 
■ ⽪膚科：画像による⽪膚がんの検出 
■ 眼科：眼底写真（網膜症） 
■ ⼼臓病：⼼電図，⼼エコー 
■ 消化器科：内視鏡画像（ポリープ，
腫瘍） 
■ 精神科：⽂章解析によるうつ病，統

合失調症 

■ その多くが画像認識技術
8

Topol, Nature Medicine (2019)

REVIEW ARTICLE | FOCUS NATURE MEDICINE

Other studies have assessed deep-learning algorithms for clas-
sifying breast cancer43 and lung cancer40 without direct compari-
son with pathologists. Brain tumors can be challenging to subtype, 
and machine learning using tumor DNA methylation patterns via 
sequencing led to markedly improved classification compared with 
pathologists using traditional histological data44,45. DNA meth-
ylation generates extensive data and at present is rarely performed 
in the clinic for classification of tumors, but this study suggests 
another potential for AI to provide improved diagnostic accuracy in 
the future. A deep-learning algorithm for lung cancer digital pathol-
ogy slides not only was able to accurately classify tumors, but also 
was trained to detect the pattern of several specific genomic driver 
mutations that would not otherwise be discernible by pathologists33.

The first prospective study to test the accuracy of an algorithm 
classifying digital pathology slides in a real clinical setting was an 
assessment of the identification of presence of breast cancer micro-
metastases in slides by six pathologists compared with a DNN (that 
had been retrospectively validated34). The combination of pathologists  

and the algorithm led to the best accuracy, and the algorithm mark-
edly sped up the review of slides35. This study is particularly notable, 
as the synergy of the combined pathologist and algorithm interpreta-
tion was emphasized instead of the pervasive clinician-versus-algo-
rithm comparison. Apart from classifying tumors more accurately by 
data processing, the use of a deep-learning algorithm to sharpen out-
of-focus images may also prove useful46. A number of proprietary 
algorithms for image interpretation have been approved by the Food 
and Drug Administration (FDA), and the list is expanding rapidly 
(Table 2), yet there have been few peer-reviewed publications from 
most of these companies. In 2018, the FDA published a fast-track 
approval plan for AI medical algorithms.

Dermatology. For algorithms classifying skin cancer by image 
analysis, the accuracy of diagnosis of deep-learning networks has 
been compared with that of dermatologists. In a study using a 
large training dataset of nearly 130,000 photographic and derma-
scopic digitized images, 21 US board-certified dermatologists were 
at least matched in performance by an algorithm, which had an 
AUC of 0.96 for carcinoma47 and of 0.94 for melanoma specifically. 
Subsequently, the accuracy of melanoma skin cancer diagnosis by a 
group of 58 international dermatologists was compared with a con-
volutional neural network; the mean ROCs were 0.79 versus 0.86, 
respectively, reflecting an improved performance of the algorithm 
compared with most of the physicians48. A third study carried out 
algorithmic assessment of 12 skin diseases, including basal cell car-
cinoma, squamous cell carcinoma, and melanoma, and compared 
this with 16 dermatologists, with the algorithm achieving an AUC 
of 0.96 for melanoma49. None of these studies were conducted in the 
clinical setting, in which a doctor would perform physical inspec-
tion and shoulder responsibility for making an accurate diagnosis. 
Notwithstanding these concerns, most skin lesions are diagnosed 
by primary care doctors, and problems with inaccuracy have been 
underscored; if AI can be reliably shown to simulate experienced 
dermatologists, that would represent a significant advance.

Ophthalmology. There have been a number of studies comparing  
performance between algorithms and ophthalmologists in diagnosing  

Table 1 | Peer-reviewed publications of AI algorithms compared 
with doctors

Specialty Images Publication 

Radiology/
neurology

CT head, acute 
neurological events

Titano et al. 27

CT head for brain 
hemorrhage

Arbabshirani et al.19

CT head for trauma Chilamkurthy et al.20

CXR for metastatic lung 
nodules

Nam et al.8

CXR for multiple findings Singh et al.7

Mammography for breast 
density

Lehman et al.26

Wrist X-ray* Lindsey et al.9

Pathology Breast cancer Ehteshami Bejnordi et al.41

Lung cancer (!+ !driver 
mutation)

Coudray et al.33

Brain tumors 
(!+ !methylation)

Capper et al.45

Breast cancer metastases* Steiner et al.35

Breast cancer metastases Liu et al.34

Dermatology Skin cancers Esteva et al.47

Melanoma Haenssle et al.48

Skin lesions Han et al.49

Ophthalmology Diabetic retinopathy Gulshan et al.51

Diabetic retinopathy* Abramoff et al.31

Diabetic retinopathy* Kanagasingam et al.32

Congenital cataracts Long et al.38

Retinal diseases (OCT) De Fauw et al.56

Macular degeneration Burlina et al.52

Retinopathy of prematurity Brown et al.60

AMD and diabetic 
retinopathy

Kermany et al.53

Gastroenterology Polyps at colonoscopy* Mori et al.36

Polyps at colonoscopy Wang et al.37

Cardiology Echocardiography Madani et al.23

Echocardiography Zhang et al.24

Prospective studies are denoted with an asterisk.

Table 2 | FDA AI approvals are accelerating

Company FDA Approval Indication

Apple September 2018 Atrial fibrillation detection
Aidoc August 2018 CT brain bleed diagnosis
iCAD August 2018 Breast density via 

mammography
Zebra Medical July 2018 Coronary calcium scoring
Bay Labs June 2018 Echocardiogram EF 

determination
Neural Analytics May 2018 Device for paramedic stroke 

diagnosis
IDx April 2018 Diabetic retinopathy diagnosis
Icometrix April 2018 MRI brain interpretation
Imagen March 2018 X-ray wrist fracture diagnosis
Viz.ai February 2018 CT stroke diagnosis
Arterys February 2018 Liver and lung cancer (MRI, CT) 

diagnosis
MaxQ-AI January 2018 CT brain bleed diagnosis
Alivecor November 2017 Atrial fibrillation detection via 

Apple Watch

Arterys January 2017 MRI heart interpretation

REVIEW ARTICLE | FOCUS
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最近のFDA承認例

REVIEW ARTICLE | FOCUS
https://doi.org/10.1038/s41591-018-0300-7

Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA. e-mail: etopol@scripps.edu

Medicine is at the crossroad of two major trends. The first 
is a failed business model, with increasing expenditures 
and jobs allocated to healthcare, but with deteriorating key 

outcomes, including reduced life expectancy and high infant, child-
hood, and maternal mortality in the United States1,2. This exem-
plifies a paradox that is not at all confined to American medicine: 
investment of more human capital with worse human health out-
comes. The second is the generation of data in massive quantities, 
from sources such as high-resolution medical imaging, biosensors 
with continuous output of physiologic metrics, genome sequenc-
ing, and electronic medical records. The limits on analysis of such 
data by humans alone have clearly been exceeded, necessitating 
an increased reliance on machines. Accordingly, at the same time 
that there is more dependence than ever on humans to provide 
healthcare, algorithms are desperately needed to help. Yet the inte-
gration of human and artificial intelligence (AI) for medicine has  
barely begun.

Looking deeper, there are notable, longstanding deficiencies in 
healthcare that are responsible for its path of diminishing returns. 
These include a large number of serious diagnostic errors, mis-
takes in treatment, an enormous waste of resources, inefficiencies 
in workflow, inequities, and inadequate time between patients and 
clinicians3,4. Eager for improvement, leaders in healthcare and com-
puter scientists have asserted that AI might have a role in address-
ing all of these problems. That might eventually be the case, but 
researchers are at the starting gate in the use of neural networks to 
ameliorate the ills of the practice of medicine. In this Review, I have 
gathered much of the existing base of evidence for the use of AI in 
medicine, laying out the opportunities and pitfalls.

Artificial intelligence for clinicians
Almost every type of clinician, ranging from specialty doctor to 
paramedic, will be using AI technology, and in particular deep 
learning, in the future. This largely involved pattern recognition 
using deep neural networks (DNNs) (Box 1) that can help interpret 
medical scans, pathology slides, skin lesions, retinal images, electro-
cardiograms, endoscopy, faces, and vital signs. The neural net inter-
pretation is typically compared with physicians’ assessments using a 
plot of true-positive versus false-positive rates, known as a receiver 
operating characteristic (ROC), for which the area under the curve 
(AUC) is used to express the level of accuracy (Box 1).

Radiology. One field that has attracted particular attention for 
application of AI is radiology5. Chest X-rays are the most common 

type of medical scan, with more than 2 billion performed worldwide 
per year. In one study, the accuracy of one algorithm, based on a 
121-layer convolutional neural network, in detecting pneumonia in 
over 112,000 labeled frontal chest X-ray images was compared with 
that of four radiologists, and the conclusion was that the algorithm 
outperformed the radiologists. However, the algorithm’s AUC of 
0.76, although somewhat better than that for two previously tested 
DNN algorithms for chest X-ray interpretation5, is far from optimal. 
In addition, the test used in this study is not necessarily comparable 
with the daily tasks of a radiologist, who will diagnose much more 
than pneumonia in any given scan. To further validate the conclu-
sions of this study, a comparison with results from more than four 
radiologists should be made. A team at Google used an algorithm 
that analyzed the same image set as in the previously discussed 
study to make 14 different diagnoses, resulting in AUC scores that 
ranged from 0.63 for pneumonia to 0.87 for heart enlargement or 
a collapsed lung6. More recently, in another related study, it was 
shown that a DNN that is currently in use in hospitals in India for 
interpretation of four different chest X-ray key findings was at least 
as accurate as four radiologists7. For the narrower task of detecting 
cancerous pulmonary nodules on a chest X-ray, a DNN that retro-
spectively assessed scans from over 34,000 patients achieved a level 
of accuracy exceeding 17 of 18 radiologists8. It can be difficult for 
emergency room doctors to accurately diagnose wrist fractures, 
but a DNN led to marked improvement, increasing sensitivity from 
81% to 92% and reducing misinterpretation by 47% (ref. 9).

Similarly, DNNs have been applied across a wide variety of 
medical scans, including bone films for fractures and estimation of 
aging10–12, classification of tuberculosis13, and vertebral compression 
fractures14; computed tomography (CT) scans for lung nodules15, 
liver masses16, pancreatic cancer17, and coronary calcium score18; 
brain scans for evidence of hemorrhage19, head trauma20, and acute 
referrals21; magnetic resonance imaging22; echocardiograms23,24; 
and mammographies25,26. A unique imaging-recognition study  
focusing on the breadth of acute neurologic events, such as stroke 
or head trauma, was carried out on over 37,000 head CT 3-D scans, 
which the algorithm analyzed for 13 different anatomical find-
ings versus gold-standard labels (annotated by expert radiologists)  
and achieved an AUC of 0.73 (ref. 27). A simulated prospective,  
double-blind, randomized control trial was conducted with real 
cases from the dataset and showed that the deep-learning algorithm 
could interpret scans 150 times faster than radiologists (1.2 versus 
177 seconds). But the conclusion that the algorithm’s diagnostic 
accuracy in screening acute neurologic scans was poorer than human 

High-performance medicine: the convergence of 
human and artificial intelligence
Eric J. Topol" "

The use of artificial intelligence, and the deep-learning subtype in particular, has been enabled by the use of labeled big data, along 
with markedly enhanced computing power and cloud storage, across all sectors. In medicine, this is beginning to have an impact 
at three levels: for clinicians, predominantly via rapid, accurate image interpretation; for health systems, by improving workflow 
and the potential for reducing medical errors; and for patients, by enabling them to process their own data to promote health. 
The current limitations, including bias, privacy and security, and lack of transparency, along with the future directions of these 
applications will be discussed in this article. Over time, marked improvements in accuracy, productivity, and workflow will likely 
be actualized, but whether that will be used to improve the patient–doctor relationship or facilitate its erosion remains to be seen.

REVIEW ARTICLE | FOCUS
https://doi.org/10.1038/s41591-018-0300-7

NATURE MEDICINE | VOL 25 | JANUARY 2019 | 44–56 | www.nature.com/naturemedicine44
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脳波⾃動診断⽀援の現状

■ ラベル付き・整形済みデータの圧倒的不⾜ 
■ データは各施設に個別に存在 
■ 施設ごとに違う計測の流儀 

■ 個別技術が別個に研究されている状態 
■ てんかん発作焦点の部位推定 
■ 医⼯で別々に研究．⼯はPublic Dataの研究． 

■ てんかん性バイオマーカの検出 
■ てんかん発作区間の検出 

■ 匿名化の問題 
■ 波形は容易．ビデオ脳波の動画像
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多施設からのデータ収集

Bucket

計算用ノード
GPU搭載

VPN Gateway VPN Gateway🇯🇵

🇺🇸

🇨🇦

🇳🇵

Data sharing using Amazon 
AWS

Zhao

研究代表者（⽥中)G共同研究者（菅野）G

クラウドによる 
データ共有・解析環境を構築
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DB・解析環境 on cloud の構築

ランドマーク化

症例検索所⾒付与

�
�����	��
�
����	��院内データ

AI出⼒（解析レポート）
の参照 “TJCloud”

アップ
ロード

所⾒
脳波

従来型DB

構築するDB

AIの学習

�
�����	��
�
����	��

ファイル（データ）単位の
やり取り

「⼤きな共有ディスク」

インタラクティブなDB
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TJcloudの開発
■ データベース上の脳波を検索・表⽰ 
■ ラベル・所⾒を付与可能
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⽬指す解析レポートイメージ：⽶国の例

•対象：眼底画像 
•機能：糖尿病性の網膜症の
検出⽀援 

• ⽀援⽅式：条件付き*First 
reader（*専⾨医に直ちに
⾒せるか否か（12か⽉後の
再診）に関する主治医によ
る判断を⽀援） 

•承認：2018年4⽉（FDA） 
• ネットワーク：畳み込み

ニューラルネットワーク

Michael D. Abràmoff, et al : Pivotal trial of an autonomous AI-
based diagnostic system for detection of diabetic retinopathy 
in primary care offices, Digital Medicine 39, 2018
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Annotations by specialist
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Proximal discharge detection

2. RELATED WORK

Recently, many researches that study EEG epilepsy have applied
DWT decomposition methods [9–11]. Other, types of filter methods
(such as time-frequency domain [12,13], or other wavelet transform
methods [11, 14] in a preprocessing stage. However, the parameter
selection for the range of filters is empirically given.

In [8], in order to detect the epilepsy spike, the researchers use
a bandpass filter of 1–70 Hz as a preprocessing method. Then, they
employ peak detection by a numerical classification technique as a
feature extraction to put into the classifier. In [15], the method also
applies a band-pass filter in the range of 0.5–70 Hz for filter and then
implements the energy of the wavelet transform and wavelet packet
methods for classifying an epileptic spike. Another work [6] uses
DWT decomposition to select the frequency range from the delta
band to the gamma band (0.4–60 Hz).

Meanwhile, other studies prefer shorter bandpass filter ranges
for preprocessing. In [16], a bandpass filter range of 0.53–40 Hz
is applied, and then the discrete Fourier transform is used to ex-
tract features for the decision tree classifier. Similarly, [17] also
used this range of filter, but with the DWT decomposition method.
The method given by Srinivasan et al. [18] applies the filter range
of 0.15–36 Hz before classifying the epileptic and non-epileptic data
segments. Similarly, in [19, 20], their methods implement DWT de-
composition with Daubechies 4 (DB4) to extract the EEG frequency
bands from 4–32 Hz.

In addition, both [21] and [22] use DWT decomposition corre-
sponding with a range of 3 and 25 Hz. In [22], they make feature
selections from the raw signal of frequency bands of delta (0.5–4
Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–25 Hz); there-
after they employ the holdout technique and k-fold cross validation,
passing into many different classifier models for distinguishing the
seizure and non-seizure EEG records.

In these studies on the classification or detection of epilepsy,
DWT decomposition and other filter methods are effective. How-
ever, the selections of filter range are set empirically in different
studies. This motivates us to identify filter parameters from data.

3. METHOD

3.1. Dataset

We collected EEG records of six patients with Benign Epilepsy with
Centro-Temporal Spikes (BECTS) [23]. The age at examination
ranged from 5.7 to 10.6 years. They were two male and four fe-
male patients. The data was taken with conventional 10-20 methods
using the Nihon Koden EEG-1200 system. The sampling frequency
was 500 Hz for each channel. This dataset was recorded and ana-
lyzed under approval from the Juntendo University Hospital Ethics
Committee and the Tokyo University of Agriculture and Technology
Ethics Committee.

First, an epilepsy specialist (pediatrician) selected a focal chan-
nel that is associated with the origin of the epileptic discharge. Typ-
ically, one EEG dataset may contain multiple focal channels, and
the specialist selected the most intense channel as the focal channel.
Then, peaks of each channel’s waveform from the recording signals
were detected by PeakUtils [24]. Second, the specialist annotated
each peak as either a paroximal discharge (spike or spike-and-wave)
or an artifact. Fig. 1 illustrates an example of typical waveforms.
Waveforms are normalized at every channel before all processing.
Then, a 1-s epoch is extracted, including 300 ms before and 700
ms after every detected peak. It must be noted that each epoch rep-

Table 1. Labeled data information
Patient Age of Sex Number of Number of

years parox artifacts
1 7.0 Female 178 424
2 6.8 Male 629 263
3 5.7 Male 580 240
4 10.1 Female 461 236
5 10.6 Female 321 188
6 6.5 Female 728 939

Total 2897 2290

(a) A paroximal discharge (b) An artifact

Fig. 1. Typical waveforms of detected peaks in a 1-s epoch.

resents one candidate spike. Table 1 represents the annotated data
information.

3.2. Preprocessing and sub-band decomopsition

In this paper, we consider two models as shown in Fig. 2. The first
model uses a predefined preprocessor, as shown in Fig. 2(a), which
considers several previously employed methods. The second model
is data-driven, where the parameters in the preprocessor are searched
on the basis of the data.

3.2.1. Fixed approach

The first approach is to adopt two steps of preprocessing for each
epoch. First, a zero-phase Butterworth infinite impulse response fil-
ter (IIR filter) is applied. The signal is filtered by a bandpass filter
with a frequency of 1–30 Hz. The high-pass filter of 1 Hz plays the
role of eliminating all the low frequency components such as breath
or eye movement, and the low-pass filter of 30 Hz helps to meet the
goal of reducing noise in the EEG recording. Further, DWT is used
for decomposition to extract the frequency sub-bands of an EEG.
The mother wavelet in this study is the Daubechies wavelet of order
4 (DB4), which is said to be appropriate for analyzing EEG sig-
nals [25, 26]. The input filtered signal is decomposed to six detailed
levels and one approximation levels. The coefficient level D6, D5,
D4 are used for representing the frequency band of the theta band
(4–8 Hz), the alpha band (8–16 Hz), the beta band (16–32 Hz), re-
spectively [6]. The detailed coefficient of D1, D2, and D3 are elimi-
nated because the frequency ranges of these bands are considered as
noise.

3.2.2. Fully data-driven approach

Sub-band decomposition with DWT, described in Section 3.2.1 can
be regarded as a filterbank comprising three finite impulse response
filters. In this approach, we build a model that learns the coefficients

Fukumori, et al. IEEE ICASSP 2019 / Submitted 2020The automatic detection of the 
abnormal waveforms caused by 
Benign Epilepsy with Centro-
Temporal Spikes (BECTS) .

Collected about 5,000 samples 
from multiple patients.
A medical doctor labels each peak 
points as a proximal discharge or 
an artifact.
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Supervised data are increasing. The dataset 
includes 31,437 samples until now.

Labeled as a proximal discharge

Labeled as an artifact



医師：バンドパスフィルタを適⽤ → 判読
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解釈可能な深層学習モデル

Model output

Machine Learning 
Model

Bank of filters

Raw signal

Raw signal

Conv. Conv. Conv.

Primary 
conv. layer

…

Model output

Machine Learning 
Model

…

AIも低域と広域
をカットしていた

CNN：第1層にバンドパスフィルタが出現

現在：50名，31,437サンプル，注釈5名（世界最⼤級）
�
�����	��
�
����	��

スパイクデータ
ベースの拡⼤

ICASSP時点：患者6名，5,187サンプル，注釈1名

Fukumori, et al. IEEE ICASSP 2019 / Submitted 2020



17

Detecting Abnormal Section
Juvenile/Childhood absence epilepsy (JAE/CAE) patients

Sakai+, submitted, 2019

10/20を2次元化

ScalpNet：多チャンネル頭⽪脳波のためのDeep Neural Network

検出結果
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頭蓋内脳波からの発作起始領域検出

発作間欠期

発作起始領域の推定

⽬視に頼らない⽅法の構築

エントロ
ピー特徴 SVM

焦点? 
⾮焦点?

焦点? 
⾮焦点?
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発作起始領域の検出精度

* Aktar et al., Scientific Reports, 2020

モデル
評価指
標

患者内検証した患者 ID

Pt1 Pt2 Pt3 Pt4 Pt5 Pt6 Pt7 Pt8

Entropies + 
SVM

AUC 0.792 0.958 0.695 0.540 0.670 0.960 0.930 0.884

F 値 0.200 0.791 0.393 0.160 0.206 0.729 0.452 0.375
**CNN 

（投稿準備中） 
AUC 0.642 0.999 0.939 0.860 0.987 0.998 0.983 0.999

F 値 0.0200 0.964 0.707 0.348 0.558 0.962 0.999 0.958
**LightGBM+

Data 
Augmentatio

n

AUC 1.00 1.00 0.97 0.98 1.00 1.00 0.99 1.00

F 値 0.86 0.98 0.60 0.64 0.88 0.95 0.88 0.99

有効なエントロピーと有効な周波数帯を発⾒

Segment index

E
le

ct
ro

de
s

Pt2

Scores

E
le

ct
ro

de
s

Scores

Pt1

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt3

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt4

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt5

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt7

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt6

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Pt9

Segment index

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Segment index Scores

E
le

ct
ro

de
s

Pt8

E
le

ct
ro

de
s

Segment index

Pt11

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Segment index

Pt10

Scores

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt2

Scores

E
le

ct
ro

de
s

Scores

Pt1

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt3

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt4

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt5

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt7

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt6

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Pt9

Segment index

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Segment index Scores

E
le

ct
ro

de
s

Pt8

E
le

ct
ro

de
s

Segment index

Pt11

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Segment index

Pt10

Scores

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt2

Scores

E
le

ct
ro

de
s

Scores

Pt1

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt3

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt4

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt5

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt7

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt6

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Pt9

Segment index

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Segment index Scores

E
le

ct
ro

de
s

Pt8

E
le

ct
ro

de
s

Segment index

Pt11

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Segment index

Pt10

Scores

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt2

Scores

E
le

ct
ro

de
s

Scores

Pt1

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt3

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt4

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt5

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt7

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt6

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Pt9

Segment index

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Segment index Scores

E
le

ct
ro

de
s

Pt8

E
le

ct
ro

de
s

Segment index

Pt11

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Segment index

Pt10

Scores

E
le

ct
ro

de
s

XX

X

X
X

XX
X

X

Segment index

E
le

ct
ro

de
s

Pt2

Scores

E
le

ct
ro

de
s

Scores

Pt1

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt3

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt4

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt5

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt7

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt6

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Pt9

Segment index

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Segment index Scores

E
le

ct
ro

de
s

Pt8

E
le

ct
ro

de
s

Segment index

Pt11

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Segment index

Pt10

Scores

E
le

ct
ro

de
s

X X

X

Segment index

E
le

ct
ro

de
s

Pt2

Scores

E
le

ct
ro

de
s

Scores

Pt1

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Segment index

E
le

ct
ro

de
s

Pt3

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt4

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt5

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Pt7

Segment index Scores

E
le

ct
ro

de
s

Segment index

Pt6

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Pt9

Segment index

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

Segment index Scores

E
le

ct
ro

de
s

Pt8

E
le

ct
ro

de
s

Segment index

Pt11

E
le

ct
ro

de
s

Scores

E
le

ct
ro

de
s

E
le

ct
ro

de
s

Segment index

Pt10

Scores

E
le

ct
ro

de
s

XX

XX

XX

X
X

X X
X

X

X X
XX

XX
X

X: SOZ labels



20

特徴結合とテンソル表現

Spectrogram Phase-Amplitude Coupling Bandpass & Entropy

CNN model CNN model
Flatten

Classifier model

In order to use multiple features of the EEG signal at the 
same time, we extract the features separately and fusion.

Feature 
Matrix

……



21

今後の展開

⼩規模施設

途上国 拠点施設・てんかんセンター

データモデル

モデルの
有償提供

開発した診断⽀
援AIの薬事承認 DB協⼒と診療点数化

の要望
医療機器メーカ/IT企業

⾃施設の診療品質の向上

データに基づく
製品開発

「創AI」

データの
有償提供

⾮専⾨医の
診療⽀援

対象をてんかん以外へ拡⼤
認知症・脳死・ICU・etc
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脳波の活⽤は幅広い

■ てんかん 
■ 意識レベル（脳死判定） 
■ 脳機能の理解（神経科学） 
■ 脳機能モニタリング 
■ くも膜下出⾎に対する診断 
■ 急性期脳梗塞に対する緊急治療 

■ 脳機能マッピング 
■ ブレイン・マシン・インタフェース 
■ スクリーニング（作業者，交通事業者等）


