戦略的創造研究推進事業 ナノテクノロジー分野別バーチャルラボ

研究領域「新しい物理現象や動作原理に基づい たナノデバイス・システムの創製」 研究課題「強相関界面エンジニアリングによるスピ ントンネル機能の巨大化」

研究終了報告書

研究期間 平成15年10月~平成20年3月

研究代表者:赤穗 博司

所属・役職 (独)産業技術総合研究所 強相関電子技術研究センター 副研究センター長

1 研究実施の概要

高度情報社会に入り、より多くの情報をより速く処理できかつ蓄積できるデバイスが求められ ている。これを支える半導体集積回路や磁気記録技術は、ますます高集積化・高密度化が行わ れ、その素子寸法がナノ領域になりつつある。しかし、従来の素子は、このナノ領域では素子の 動作原理そのものが破綻をきたすと予想され、質的に新しい現象を利用した高性能なデバイス が望まれている。その一つに、ナノ領域で出現する、新しい物理現象がある。特に、電子の持つ 「電荷」と「スピン」の自由度を同時に利用した新しいデバイスとして、スピンエレクトロニクス、ある いはスピントロニクスが最近注目され、積極的に研究開発が進められている。例えば、金属系強 磁性体と非磁性金属からなる、nm 膜厚で制御された人工格子では、外部磁場により磁化方向を 制御することにより抵抗が変化する現象(GMR 効果)がある。この GMR を利用した素子は、大きな 磁気抵抗変化率を持ち、微細化技術により、既に実際のハードディスクに適応されており、高密 度記憶に貢献している。また、電子のスピンを反映した伝導現象として、スピントンネル効果によ る磁気抵抗(TMR)の変化があり、現在、その実用化に向け研究が活発に進められている。

一方、ナノレベルでの微細な構造が制御されたナノ材料として、強相関電子系物質がある。 強相関物質は、多数の電子が電荷だけでなく、スピンや軌道の自由度を含めて強く相互作用し、 臨界的な量子相を形成している。この競合する複数の量子相は、ボトムアップ的にナノ構造を自 己形成し、巨大応答の要因となっている。このような多重臨界的な量子相を制御することにより新 しい電子デバイス機能が開拓できる。特に、スピンと電荷に着目するとその可能性は多種多様で ある。その一つに、巨大磁気抵抗(CMR)効果がある。例えば、ペロブスカイト型 Mn 酸化物は、低 温では電子が規則正しく整列し反強磁性絶縁体であるが、外部磁場により、整列していた電子 が突然動き出して強磁性金属になる。この外部磁場による相転移に伴って電気抵抗率が 10 桁 以上も大幅に変化することが発見されている。さらに、ペロブスカイト型 Mn 酸化物には、スピン完 全偏極強磁性体(スピン分極率 100%)をもつハーフメタルのものもあり、これを用いたスピントンネ ル素子では、巨大なトンネル磁気抵抗効果を示すことが期待される。この強相関スピントンネル 素子ではヘテロ構造が不可欠であり、強相関電子の環境を原子スケールで制御するという、トッ プダウンのナノ構造界面制御が必要となる。

以上のような研究背景を基に、本研究では、強相関遷移金属酸化物の完全スピン分極強磁 性に焦点をあて、その界面磁性の直接観察と制御技術(界面エンジニアリング手法)を新たに開 発するとともに、この直接観察を元に界面デザインを行い、実際にデバイス構造を作製し、その 特性評価を通してスピントンネル機能の巨大化を実現することを目的とする。さらに、ここで確立 した界面エンジニアリング手法を拡張し、新たな強相関界面デバイス機能の開拓にまで発展さ せることを目指した。本研究では、強相関電子系特有の超高密度電子集団の人為相制御と電 子秩序状態のデバイス応用を探求することに特徴があり、全く新しい切り口のナノデバイス研究 テーマである。

2 研究構想及び実施体制

(1) 研究構想

本研究課題に対する具体的なアプローチとして、大きく二つに分けた。一つは、酸化物原子 平坦接合界面における界面磁性の新しい直接観察法の開発である。従来、強磁性酸化物薄膜 とトンネル障壁とのヘテロ接合界面では電荷のやりとりによると思われるスピン分極率の低下やス ピンの cantingのため、界面磁性が低下し、その結果、本来ハーフメタルが持つべき大きな磁気 抵抗が得られないと推測されてきた。すなわち、界面磁性は、スピントンネル機能に極めて強く 反映し、その界面磁性の直接観察は、その制御を行う上でも不可欠となっている。この界面磁性 の直接観察技術として、光をプローブとした非線形磁気光学手法を独自に開発するとともに、二 次電子をプローブとしたスピン走査電子顕微(SEM)手法を併用することとした。

本研究課題に対する具体的なアプローチの二つ目としては、界面エンジニアリングによる La_{1-x}Sr_xMnO₃(LSMO)を用いたスピントンネル接合の開発がある。絶縁体/LSMOの界面を非線形磁 気光学で評価した結果をふまえ、絶縁体の物質デザインや変調ドープによるLSMO界面デザイン を行うという「界面エンジニアリング」手法を確立させる。この界面エンジニアリングに基づき制御 された LSMO/絶縁層/LSMO のトンネル積層膜作製技術を開発する。一方、積層膜から接合デバ イスを作製するプロセス技術に関しては、プロセスダメージの低減化、微細加工技術の高度化、 多層配線技術の高性能化、配線コンタクト接触抵抗の低減化など、新たなデバイス技術の開発 を進める。これらデバイスプロセス技術を駆使して、最終的には、素子を作製することにより、巨 大スピントンネル機能をデモンストレーションする方針をとった。

当初計画では、強相関遷移金属酸化物の界面磁性に着目し、「強相関スピントンネル機能」 を中心的研究項目に設定していたが、最近、Pr_{0.7}Ca_{0.3}MnO₃やCrドープSrTiO₃などのペロブスカ イト型酸化物半導体(絶縁体)を金属電極で挟んだサンドイッチ構造において、パルス電圧を印 加すると抵抗値が可逆的に変化する電界誘起抵抗変化(Colossal Electro-resistance: CER)効果が発現することが見つかり、この現象の不揮発性メモリへの応用に向けて活発な研究 が行われ始めた。この CER 効果が、電極金属と強相関酸化物の界面電子状態に深く関わると考 えられることから、強相関界面デバイス機能の研究をより発展させるため、「強相関スピントンネル 機能」の研究に加えて、「強相関界面伝導機能」の研究を新たに設定した。具体的には、本研究 で確立・開発した界面園児にリング手法に基づき、原子レベルで制御したエピタキシャルへテロ 接合を用いて CER 効果を系統的に調べ、抵抗スイッチの原因を明らかにすることを目指す。

上記の目的を達成する為、以下の5つの研究項目を設定した。なお、それぞれの研究項目は お互いに強く連携していることを強調したい。

【1】非線形磁気光学効果による界面磁性の研究

ヘテロ接合界面の空間反転対称性の破れと界面磁性(時間反転対称性の破れ)の外積として 誘起される仮想的な電気分極を非線形磁気光学効果で検出する手法を開発する。また、この手 法を様々な絶縁体と LSMO の単一界面構造に展開して界面磁化の定量技術として確立する。さ らに、界面磁化の定量的な評価を基に、好適な絶縁材料の選定や LSMO のドーピングを界面付 近で変調して補償する技術を開発し、最適化する。 分担:赤穂グループ(産総研)

【2】スピン SEM による界面磁性の研究

スピントンネル機能制御に不可欠な強相関酸化物薄膜のナノ領域での表面スピン状態を、ス ピン SEM を用いて直接評価する。上記非線形磁気光学効果による界面磁性評価とは相補的な 評価であり、スピン SEM では面内の空間分解もできるので、ナノスケールから実際のデバイスサイ ズであるミクロンスケールまで広いダイナミックレンジでの界面磁性の評価が可能となる。具体的 には、まず、スピン SEM を駆使して、デバイス構造にとって必要な遷移金属酸化物薄膜表面のス ピン状態を定量的に評価する。さらに、この技術をヘテロ構造に展開するために、スピン SEM に 直結したパルスレーザ堆積法 (PLD) 装置を導入し、絶縁層を遷移金属酸化物薄膜上に形成し、 界面磁化を評価することを目指す。

分担:赤穂グループ(産総研)

【3】強相関スピンデバイスプロセス技術の開発

スピントンネル素子を作製するためのデバイスプロセス技術としては、遷移金属酸化物薄膜作 製技術、多層積層ヘテロエピタキシャル薄膜作製技術、フォトリソグラフィおよび電子ビームリソ グラフィ技術、ドライエッチング技術などの微細加工技術の開発がある。具体的には、RHEED 振 動観察を用いたパルスレーザ堆積法による原子層を制御された遷移金属酸化物エピタキシー 薄膜技術およびヘテロ多層薄膜作製技術の開発を行う。また、微細加工技術として、遷移金属 酸化物薄膜に適応可能でかつ低プロセスダメージのエッチング技術を新たに開発する。さらに、 多層配線技術の高性能化、配線コンタクト接触抵抗の低減化技術の開発も進める。 分担:赤穂グループ(産総研)

【4】強相関界面デバイス機能の研究

本研究の中心的な研究課題である。強相関電子系がもつ界面デバイス機能の研究をより発展 させるため、当初の「強相関スピントンネル機能」の研究に加えて「強相関界面伝導機能」の研究 を新たに設定した。

(a) 強相関スピントンネル機能

絶縁体/遷移金属酸化物の単一界面を磁気光学・スピン SEM で評価した結果をふまえ、絶縁体の物質デザインや遷移金属酸化物の変調ドープを最適化する。これらの定量的な評価を総合して、制御された遷移金属酸化物/絶縁層/遷移金属酸化物のトンネル積層膜作製技術を開発する。最終的には、上記強相関デバイスプロセス技術を駆使して、素子を作製することにより、巨大スピントンネル機能の実証を目指す。

(b) 強相関界面伝導機能

強相関電子系物質で現われる電界誘起抵抗変化(CER)現象(電場の印加により抵抗の可逆 で劇的な変化が誘起される現象)の原理や機構解明を目的とする。具体的にはCER現象の動作 メカニズムとして、電極金属と強相関酸化物半導体(絶縁体)薄膜の界面にショットキー接合に相 当する空乏層が存在し、その界面領域への電荷蓄積効果が可逆なメモリ効果の起源であること を提案するとともに、界面エンジニアリング手法によりメカニズムの実証を目指す。 分担:赤穂グループ(産総研)

【5】走査プローブ顕微鏡による表面構造・物性の研究

走査プローブ顕微鏡を用い、強相関酸化物の表面構造、結晶性、導電特性、電子状態等を 評価し、スピン像との対応を明らかにする。これにより、デバイスプロセスにおける表面の酸素欠 損、キャリア濃度の不均一性、格子欠陥や不純物元素の混入などを評価し、強相関酸化物表面 の最適化を図ることを目標とする。 分担:小池グループ(北大)

(2)実施体制

3 研究実施内容及び成果

3.1 産業技術総合研究所 赤穂研究グループ (1)研究実施内容及び成果

【1】非線形磁気光学効果による界面磁性の研究

① ペロブスカイトマンガン酸化物の界面エンジニアリング

La_{1-x}Sr_xMnO₃ (LSMO) /SrTiO₃ (STO)/LSMO 磁気トンネル接合(MTJ)のトンネル磁気抵抗は、 LSMO が完全にスピン偏極したハーフメタルであるにも関わらず、良好な特性が得られていない [1]。 その原因として考えられるのが LSMO/STO 界面におけるスピンキャンティング(強磁性磁 化の消失)である。 その問題を解決するためには界面磁性を選択的・定量的に評価することが、 非常に重要な課題となる。

我々はすでに、「三色」超格子 - すなわち三種類の物質 LSMO(*x*=0.4), STO, LaAlO₃ (LAO) を交互積層して人工的に反転対称を破った人工格子 - において、巨大な磁化誘起第二高調 波発生(MSHG)および非線形磁気光学カー効果を発見し、これらの非線形磁気効果が有力な 界面磁性評価手法となりうることを見出した [1,2]。 そこで本研究では、(1) MSHG を LSMO と 絶縁体(STO,LAO)との単一磁性界面に展開してその局所磁性を明らかにし、MSHG を用いた界 面磁性評価手法を確立する、および(2)界面の構造を原子レベルで制御することで、界面磁性 の最適化、すなわち強靭な強磁性界面を実現することを目指した [3]。

本研究で用いた MSHG 測定用試料は、STO(001)基板上に成長した厚さ 120 nm の LSMO(x=0.4)薄膜、さらにその上に絶縁体(STO or LAO)薄膜を cap-layer として 2 nm 積層した 二層膜である(図1-1)。LSMO 層が十分に厚いため、キャップ層と磁性層の界面のみが MSHG に寄与し、基板・薄膜界面からの寄与は無視できると考えられる。 図1-1に示したように、 MSHGは s偏光したフェムト秒パルスレーザを試料に照射し、反射した SH光を偏光子で角度分 解検出してデータを得た。磁場は面内に、電場と垂直方向にかけた。中心対称性をもつ物質で はバルクとしては SHG 不活性だが、表面や界面のように中心対称性の破れたところでのみ SHG 活性となる。この場合 z方向に中心対称性が破られるため、z方向に二次の非線形分極 P(// 2)が生じ、p 偏光した SHG が観測される。そしてさらに界面が磁化(Mをもつ場合、時間反転対称 性も同時に破られるため、 $P \ge M$ の外積ベクトルであらわされるいわゆるトロイダルモーメント Tが 誘起される。このトロイダルモーメントも擬似的分極として、この方向に第二高調波を生じさせる (MSHG)。MSHG は s 偏光しているため、SH 光はカー回転(非線形磁気光学カー効果)を起こ す。この回転角と SHG の非磁性成分(p 偏光)成分の大きさを精密に測定することで、非常に弱 い MSHG 強度を正確に得ることができた。本研究ではその MSHG 強度の平方根を界面磁化の 大きさと定義した。

図 1-1.(上)MSHG 測定の模式図。(下)電気分 極(P//2)、磁化(M//x)、トロイダルモー メント(T[・P·M] //y)の配置図。このトロ イダルモーメントも擬似的分極として、こ の方向に第二高調波を生じさせる (MSHG)。

 図 1-2. MSHG の振幅強度より求めた各界面の磁化(M_{int})。(A)が温度依存性(磁場 0.05 T で測定)、(B)が磁場依存性(温度 50 K で測定)。四角,丸、三角のプロ ットはそれぞれ、STO/LMO/LSMO、LAO/LSMO、STO/LSMO 界面のデータ をあらわす。A、B各図の上枠は、それぞれ、50 K、7 T における界面磁化で規 格化した値を示す。実線は薄膜全体の磁化(M_{fin})を表す。

図 1-2A に磁場 0.05Tで測定した界面磁化の温度変化を示す。まず STO/LSMO 界面では 全温度範囲で MSHG は殆ど観測されなかった。これにより STO/LSMO 界面では確かに dead layer が存在していることが分かった。一方 LAO/LSMO 界面では劇的に MSHG 強度が増大した。 その界面強磁性は250K程度の高温であっても残存しているが、薄膜の磁化には及ばない。図 1-2Bに50 Kにおける界面磁化の磁場依存性を示す。このいわば「界面の M-Hカーブ」は自発 磁化成分と磁場の一次に比例して増大する磁化からなっており、7 T での磁化で規格化すると両 者の相対比を見積もることが出来る。その結果、LAO/LSMO 界面は7Tの磁場をかけることによ り70%磁化しか増大しなかったのに対し、STO/LSMO界面では200%も増大した。このことから、 STO/LSMO 界面ではスピンがキャンティングが顕著で殆ど反強磁性的になっているのに対し、 LAO /LSMO 界面ではさほど顕著でなく、ある程度強磁性が維持されているといえる。 LSMO(x=0.4)/STO 薄膜は、Tc=340 K の強磁性を示すが、x>0.5 では A 型の反強磁性を示す。 このため、LSMO(x=0.4)の強磁性磁化秩序は界面において著しく不安定になる。STO/LSMO 界 面ではさらに、TiO2-SrO-MnO2-La0.6Sr0.4O-,のように原子が積層しているため、SrO 層により終 端された界面のLSMOはホールドープされ、オーバードープ状態になったLSMOは容易に反強 磁性化すると考えられる。もしそのようなことが起こっているのであれば、アンダードープの LSMO(x<0.3)を電極材料として用いれば界面の電荷移動を相殺することができるが、肝心の薄 膜全体の Tc,伝導性が劣化してしまう。

そこで我々は、「傾斜組成界面」界面、すなわち LSMO(x=0.4)を電極層として用い、界面付近のみ徐々にアンダードーピングした構造、を考案した。本研究では、STO と LSMO の間に2分子層(0.8nm)の LaMnO₃(LMO)を挿入した界面構造を作製してMSHG測定を行った。LMO 自体は反強磁性絶縁体であるが、STO と LSMO よりホールをドープされ、界面の電荷移動を相殺して強磁性を示すと期待できる。実際この STO/LMO/LSMO 界面では、MSHG は非常に大きく、STO/LSMO はおろか LAO/LSMO をも上回っている(図 1-2A)。また磁場依存性は 0.1 T 以上では小さく、典型的な LSMO 薄膜の MH カーブと類似している(図 1-2B)。即ち、STO 界面近傍であってもバルクのような強靭な界面強磁性を実現できた。

成果の位置づけ:

この研究成果により、界面のみの磁性を直接的・選択的に評価する手法界面エンジニアリン グ手法を確立した。そして界面エンジニアリングによる界面磁性増強という、MTJ の特性改善に 直結する重要な知見を得た。さらに本研究の意義は、単に MTJ の性能を向上しただけではなく、 界面での電子物性の擾乱という強相関電子の宿命ともいえる命題に、それを制御する切り口を 見つけ、明確に実証したことであり、様々なデバイス開発を推進する上で意義深い。

類似研究との比較:

強相関酸化物の磁性が界面において著しく変調されやすいことは、人工超格子における磁 性研究などから間接的に示唆されていた[4,5]。しかし界面磁性を直接的・選択的に観測できる 新手法を活用し、原子レベルでデザインした界面構造を構築して強相関界面物性を最適化する 手法は全く前例がなく、極めて画期的である。

[1] H. Yamada et al.: Appl. Phys.Lett. 81,4793 (2002).

[2] Y. Ogawa et al.: Phys. Rev. Lett. 90, 217403 (2003).

[3] H. Yamada et al.: Science. 305, 646 (2004).

[4] Y. Ogimoto et al.: Jpn. J. Appl. Phys. 42, L369 (2003).

[5] M. Izumi et al.: Phys. Rev. B 64, 064429 (2001).

② LaMnO₃ /SrMnO₃ 界面における軌道状態制御

強相関電子界面では単なる半導体や金属のアナロジーでは理解不能な新奇な振る舞いが予想される。このことは、磁気トンネル接合など強相関系デバイスの実現に向けてはしばしば深刻な壁となる[6]。しかし界面の強相関効果について議論した研究は未だ多くない。そこで本研究では典型的な強相関界面であるモット絶縁体 LaMnO₃ (LMO、電子配置 $t_{2g}{}^{3}e_{g}{}^{0}$)からなる界面を取り上げ、界面における電荷・軌道・スピン状態を解明、さらにそれらの自由度は互いにどのように結合しているのかを考察した。とくに軌道の自由度は界面においても重要なパラメータであるとの仮定の下、これをエピタキシャル歪による変調として観測することを試みた[7]。

界面のストレイン効果を調べるために、SrTiO₃(STO,格子定数 $a_{sub} = 0.3905$ nm), La_{0.3}Sr_{0.7}Al_{0.65}Ta_{0.35}O₃ (LSAT, $a_{sub} = 0.3870$ nm), LaAlO₃ (LAO, $a_{sub} = 0.3792$ nm)、3 種の(001)基板上にLMO-SMO超格子をパルスレーザ堆積法により作製した。作製した超格子は、LMO 6 層とSMO 4 層([La6, Sr4])、またはLMO 3 層とSMO 2 層([La3, Sr2])を交互積層したものの2種類である。すべての超格子について 5 倍または 10 倍周期に対応する明瞭な超格子ピークを観測した。また薄膜の面内の格子定数(a)は、全体にわたって基板のそれ(a_{sub})と完全に一致した。さらに面直方向の格子定数(c)から、超格子の正方晶歪の大きさ(c/a)は、LAO,LSAT,STO 各基板上でそれぞれ 1.05(大きな圧縮歪)、1.01(良い格子整合)、0.98(伸張歪)と見積もられた。

図 1-3A は LMO-SMO 超格子および同組成の La_{0.6}Sr_{0.4}MnO₃ [LSMO(*x*=0.4)]固溶体薄膜の 磁化・電気抵抗の温度依存性である。LSAT 上に成長した [La3, Sr2]超格子が最も良い金属性 を示し、 [La6, Sr4]/LSAT 超格子は金属と絶縁体の中間的性質を示した。したがって LMO/SMO 界面 2-3 層の範囲内で Mn³⁺- Mn⁴⁺間の電荷移動が生じていると考えられる。またそ れぞれ 280K,200K において磁気転移を起こした。基板を STO に代えても、超格子の電気抵抗 や磁気転移温度はあまり変化しなかった。しかし磁化は大きく異なった。たとえば、STO 上の [La3, Sr2]超格子で自発磁化が 1.6 $\mu_{\rm B}$ /Mn(LSMO (*x*=0.4)/STO 薄膜の半分程度)であるが、 LSAT 上では自発磁化は 3 $\mu_{\rm B}$ /Mn(LSMO (*x*=0.4)/LSAT 薄膜と同様)であった。同様なストレイン効果は[La6, Sr4]超格子でも起こった。一方非常に大きな圧縮歪のかかる LAO 基板上では超 格子は反強磁性絶縁体になった。

各基板上での電子状態の違いを究明するため[La3, Sr2] 超格子の光学吸収スペクトルを測定した(図 1-3B)。室温では大差なく、いずれも典型的な LSMO 系 (*T*_T_)のスペクトルである。

図1-3. (A) LSMO (x=0.4) 固溶体薄膜, [La3, Sr2] 超格子、[La6, Sr4]超格子の抵抗・磁 化(0.05T, //[100])の温度依存性。(B) [La3, Sr2]超格子の光学吸収スペクトル。 STO, LSAT, LAO基板上の試料はそれぞれグレーの実線、黒の実線、点線で示し た。

一方基底状態は基板によって著しく異なることがわかった。LAO 上の超格子では 0.2eV のギャップと 0.6eV にブロードなピークがみられ、面内の二重交換相互作用が強烈な圧縮歪により消失したと考えられる。LSAT 上の超格子は金属特有の、フォトンエネルギーに関して単調減少なスペクトルをもつ。STO 上の超格子はスペクトルにエネルギー依存性があまりなく、eg電子の運動エネルギーが低い incoherent な金属であることを意味する。

以上のようなストレイン効果から、Mn 3*d*軌道の自由度が、バルク同様、界面においても重要な 役割を果たしていることが明らかとなった。図 1-4 に、LMO/SMO 界面の軌道状態の模式図を示 す。STO 基板上では伸張歪により $d(x^2-y^2)$ 軌道状態が支配的で、界面は層状 (A-type)反強磁 性、つまり大きな磁化はもたないが良好な伝導性を示す。格子整合のよい LSAT 基板上では e_g 軌道状態は無秩序化し、強磁性界面が実現する。LAO 基板では強い伸張歪により、 $d(3z^2-r^2)$ 軌 道状態が有利になり、界面は鎖状 (C-type)の反強磁性絶縁体となると考えられる。

成果の位置づけ:

この研究成果により、界面の軌道状態制御という、デバイス特性を改善する新たな手段を得た。 また界面において局所的かつ強烈な電荷移動と強磁性を実現したことは、「人工極性磁石にお ける交差相関物性の実現」という新たな研究の展開をもたらし、基礎物質科学的にも重要な成果 と位置づけられる。

類似研究との比較:

LMO-SMO超格子の物性は他グループによる報告が数例あるが[8]、すべてSTO基板のみを 用いて行われており、本研究に比べ磁性や軌道状態に関する議論が十分でなかった。一方、基 板による格子歪を活用してペロブスカイトマンガン酸化物薄膜の物性を制御しようとする試みは Konishi らにより先駆的研究がなされ[9]、以後非常に多くの研究例がある。しかしこれを人工超 格子界面に拡張した研究は皆無である。本研究は電子・磁気的状態に関する微視的・定量的議 論や界面の局所的・選択的観測が可能になったことにより初めて実現したものである。

- [6] H. Yamada *et al.: Science* .**305**, 646–648 (2004).
- [7] H. Yamada et al.: Appl. Phys. Lett. 89, 052506 (2006).
- [8] P. A. Salvador et al.: Appl. Phys. Lett. 75, 2638 (1999).
- T. Koida *et al.: Phys. Rev.* B **66**, 144418 (2002).
- [9] Y. Konishi et al.: J. Phys. Soc. Jpn. 68, 3790-3793 (1999).

【2】スピン SEM による界面磁性の研究

①スピン SEM による(La,Sr) MnO3表面磁性観察

各基板上での電子状態の違いを究明するため[La3, Sr2] 超格子の光学吸収スペクトルを測定した(図 1-3B)。室温では大差なく、いずれも典型的な LSMO 系 (<u>ア</u>*T*₀)のスペクトルである。 スピントンネル接合の磁性電極内磁化状態は、接合に発現するトンネル磁気抵抗(TMR)効果の 特性を支配するため、様々な手法によって評価が試みられてきた。その中で、磁気顕微技術を 用いた実空間観察は、電極内の磁化分布を直接計測できるため特に有力視されている。これま で、酸化物スピントンネル接合の電極材料の磁化状態に関する実空間観察例は幾つかあるが、

電極のような薄膜材料においては、 多くの場合、反磁場等によって磁化 が薄膜面に平行となってしまい、広汎 に用いられている磁気力顕微鏡のよ うな漏洩磁場検出型の顕微技術では 磁化状態の検出が非常に困難であっ た。スピン SEM は磁化方向に依らず 磁化自身を直接検出することができる ため、電極薄膜の観察にスピン SEM を用いることができれば、従来技術で は得られなかった精細な磁化分布像 を得ることが出来ると期待される。加 えて、スピン SEM は試料最表面 1 nm の磁化情報を検出できる高い表面感 度を有することから、スピントンネル接 合のような薄膜積層デバイスでは特 に重要となる薄膜表面の磁化状態を 選択検出することが可能となる。我々 は、活性な酸素ガスを利用することに よって、酸化物磁性表面にダメージを 与えることなく、表面の吸着汚染のみ を除去するためのシステムを新たに 開発することによって、スピン SEM を 用いた酸化物薄膜観察を初めて可能 とし、電極薄膜表面の磁化分布像を 取得することに成功した。

図 1-5 はスピン偏極材料

SEM

Ŷ

図 1-5. スピン SEM によって取得した La_{0.7}Sr_{0.3}MnO₃
 薄膜の (a) SEM 像と(b), (c), (d)磁気像。磁
 気像下の矢印は対応する磁化ベクトル成分
 を示す(本文参照)。4 枚の像は約 100 K に
 おいて同時に記録された。

 $La_{0.7}Sr_{0.3}MnO_3(LSMO)$ 単結晶薄膜のスピン SEM 像である。薄膜はパルスレーザー堆積法を用いて SrTiO_3(001)単結晶基板上に成膜された。薄膜は厚さ約 100 nm で(001)面配向であった。スピン SEM では、1画素単位で試料の磁化ベクトルを3成分にベクトル分解し(図 1–5 では観察面に 垂直な1成分(b)と観察面内で直交する2成分(c)および(d))、それぞれ独立した3枚の磁気像 として記録する。これに通常の SEM 像を合わせた計4枚の像が同時計測されることになる。図下

の矢印が各磁化成分の方向を示し、白黒のコント ラストは成分の符号と大きさを示している。図 1-5 (c)では、縦成分の像に鮮明な磁区像が見られ、 その大きさは数ミクロンから数 10 ミクロンに及んで いる。図 1-5(b)のように、垂直磁化成分は検出さ れておらず、[111]方向に磁化が平行であったバ ルク単結晶の場合と異なり、薄膜の磁化は(001)配 向面に平行であることがわかる。これは、基板から の応力等によって、薄膜が膜面に平行な磁化容 易軸を持つことによる。図 1-5(d)の横成分の像に は、磁区境界部で両側の磁区を接続する磁壁の 構造が捉えられている。この高分解能観察によっ て、LSMO 薄膜の磁壁構造を解析することに初め て成功し、枕木型磁壁が形成されていることを明 らかにした。

我々は、後述するように、LSMO に Ru を微量 添加することによって、スピントンネルデバイスの 動作安定化を可能とする高保磁力型スピン偏極 材料を開発している。スピン SEM を用いて、この RuドープLSMO 薄膜の磁化状態を微視的に解析 することに初めて成功した。観察した5%Ruドープ LSMO 単結晶薄膜はパルスレーザー堆積法を用 いて SrTiO₃(001)単結晶基板上に成膜された。膜 厚は約40 nm で配向面は(001)であった。図1-6(a) は磁化ベクトルの面内 2 成分をベクトル合成する ことによって得た、面内磁化方向の実空間マップ である。図右のカラーホイールが磁化方向を示す。 数ミクロンスケールの磁区によって、一般的な磁 束の還流構造(黒矢印は各磁区の磁化方向を示 す)が形成されているように見えるが、波線部を高 分解能観察した図 1-6(b)を見ると、磁区の内部に 微細構造が形成されていることがわかる。図 1-6(b)は横方向の磁化成分による像であり、各磁 区内の矢印は磁区の平均磁化方向を示す(図 1-6(a)を参照)。この図では、縦方向の磁化を持 つ磁区に縞状の微細構造がみられ、磁化が横方 向(左右)に揺らいでいる様子がわかる。縦方向の 磁化成分による像(不出)でも同様のゆらぎ構造 が形成されている。この微細磁区内の磁化の揺ら ぎと、その平均磁化による磁束還流の形成は、結 晶磁気異方性が支配的な単結晶薄膜で磁化容 易軸が膜面に平行でない場合に構成される磁区 の特徴である。図 1-6(c)は図 1-6(b)の波線部分の 詳細を観察した結果であるが、微細磁区の幅はわ

図 1-6. (a)スピン SEM によって取得 した 5%Ruドープ La_{0.7}Sr_{0.3}MnO₃ 薄膜 の 面内磁化方向マップ。磁化方向 は右のカラーマップによって示され る。(b),(c)図右矢印方向の磁化成 分による同視野内の高分解能像。 観察温度は約 120 K。

ずかに30 nm 程度であり、スピントンネル接合の電極サイズに比較して十分小さいことがわかった。 TMR の大きさは、電極間の磁化の相対角度に依存するため、各電極は単磁区かつ磁化が接合 面に平行であることが望ましい。今回の解析結果は、電極磁化が必ずしも理想的な磁化状態に ないことを示しており、磁化状態を制御する工夫を施すことによって、より大きな TMR を導出する ことが可能であることを示唆する結果と考えられる。

このようなスピントンネル接合電極の磁化状態の直接解析は、これまで多数試みられているが、 十分な解析がなされているとは言い難い。その主な理由は、電極薄膜内の面内磁化を直接検出 することが原理的に可能であり、かつ、微小なスピントンネル接合を高い精度で実空間観察でき るだけの分解能を備えた磁気顕微手法が存在しなかったことである。最近では、磁化情報を直 接取得することができる光電子顕微法などを用いた解析なども試みられているが、空間分解能 が十分ではなく、図1-5(d)や図1-6(b)(c)のような磁気的微細構造の解析例は未だ報告されてい ない。また、図1-6(a)のような磁化方向の定量解析は他の顕微手法には見られないユニークな 機能であり、スピントンネル接合を含めた微小領域磁化の定量解析ツールとしての、スピン SEM の有用性を示す結果と言える。

成果の位置づけ:

近年、MRAM、スピン RAM、TMR 型超高感度磁気ヘッドなど、TMR を利用したスピントロニクス デバイスの開発が活発に行われているが、高スピン偏極材料の開発に基づく巨大 TMR の導出 は、いずれの場合にも共通した優先研究課題として位置づけられている。本研究で解析したペ ロフスカイト酸化物をはじめとして、高スピン偏極材料として有望視されている酸化物磁性体は多 数存在しており、多くの研究機関により開発が始められている。今回開発した酸化物磁性体は多 表面清浄化プロセスを活用すれば、金属磁性体に加えて、多くの酸化物磁性体をスピン SEM に よって解析することが可能になると考えられる。先に述べたように、スピン SEM は試料最表面のス ピンを選択検出できるため、表面の重要性が高い薄膜スピン偏極材料の評価手段として、本手 法を広く利用することが可能と予想される。また、我々が開発したスピン SEM は深さ方向・面内方 向ともにナノメートルオーダーの分解能を有している。これは実用化されている高分解能磁気顕 微鏡の中で最高クラスの分解能であり、極微小領域のスピンをベクトル解析可能な定量スピンプ ローブとして、様々な用途での利用が期待される。

【3】強相関スピンデバイスプロセス技術の開発

段差基板による析出物フリー接合作製

ペロブスカイト酸化物(La,Sr)MnO₃ (LSMO)は、その高いスピン分極率からスピントンネル接合 などへの応用が期待されている材料である。 LSMO 高品質薄膜は、パルスレーザーアブレー ション堆積(PLD)法によって作製され、特に表面処理を施した SrTiO₃(100)基板上に、比較的高 温・低酸素圧条件下(典型的には、基板温度 *T*_s=870°C,酸素圧 *P*_{O2}=1mTorr)で製膜すると、表 面がペロブスカイト1層に相当する約0.4nmのステップと原子平坦なテラスで構成されるエピタキ シャル薄膜を得ることができる。 しかしながら、この LSMO 薄膜表面を広範囲で見た場合、図

1-7 に示すように粒径 0.3µm 程度の微粒子が多数析出し、 LSMO のデバイス応用における一つの課題となっていた。 (この微粒子はマイクロオージェ分光により、薄膜組成より過 剰となり析出した Mn 成分であることがわかった。)例えば、 積層型スピントンネル接合の場合、下部 LSMO 電極表面に このような析出粒子が存在すると、厚さ数 nm 程度のトンネル バリア層をつきぬけ、局所的なリークパスを形成し、デバイス 性能を著しく低下させてしまうことが予想される。 実際、こ れまでの積層型 LSMO スピントンネル接合では、接合面積 で規格化した接合抵抗に数桁にわたるばらつきが報告され ており[10]、特性の再現性・信頼性が問題となっていた。

図 1-7. PLD 法で作製した典 型的な LSMO 薄膜の 表面 SEM 像。

そのため、広範囲で原子レベル平坦な LSMO 薄 膜を作製する手法が、LSMO スピントンネル接合 の高機能化や物性的な議論には不可欠であると 考え、その確立を最優先で行った。本研究で開 発したのは、あらかじめ段差をパターンニングし た基板上に製膜することで析出物発生場所を制 御するという斬新な手法である[11]。

図 1-8 に Ar⁺エッチングで高さ 100nm の段差 パターンを作製した SrTiO₃ 基板上に PLD 法 (T_s =870°C, P_{O2} =1mTorr)で作製した LSMO 薄膜 (膜厚 80nm)表面の SEM・AFM 像を示す。 段 差縁が表面析出物の成長核として作用する結果、 ペロブスカイト1層レベルでの平坦領域をあらか じめデザインした場所に形成することができる。 段差縁から析出物抑制が有効な距離を *L*として、 その T_s 依存性を示したのが図 1-9 である。 *L*は 実線で示した熱活性化型依存性とよく合致し、 T_s の上昇とともに増大する。 この温度領域では、 LSMO の結晶性も T_s の上昇とともに良くなるため、 これは好都合である。

図 1-9 より、両側の段差縁からの析出物抑制 効果を利用する場合、850°C 以上の T_sであれば、 フォトリソグラフィープロセスで加工可能なサイズ の平坦領域が確保できることがわかる。そこで、 この平坦領域に下部 LSMO(80nm)/バリア SrTiO₃(4nm)/上部 LSMO(28nm)接合を作製した (図 1-10)。図 1-11 にこの接合の 10K における 規格化接合抵抗 RA(R:接合抵抗,A:接合面積)の 接合面積依存性を、従来型の接合の報告例[10] とともに示す。析出物フリー接合では、接合に 依存せず接合抵抗が接合面積に反比例する理 想的な特性が得られた。すなわち、下部 LSMO 電極平坦化の成果として、バリアの均一性が向 上し、接合特性の再現性・信頼性が大幅に改善 された。

成果の位置づけ:

従来のLSMOトンネル接合の特性が不十分な ものであった要因の一つとして、LSMO/バリア絶 縁体界面での強磁性秩序の低下などが指摘さ れてきた。しかし、接合特性の再現性に著しく 問題がある状況下において、その検証を行って も、信頼性のある結論を得ることはできない。そ の意味で、この原子レベルで平坦なLSMO 薄膜 作製法の確立は、次の強相関界面エンジニアリ ング手法によるトンネル磁気抵抗効果向上を実 現した研究においても、不可欠な要素技術であ る。

図 1-8. 段差パターンを形成した SrTiO₃ 基板上に PLD 法で作製した LSMO 薄膜。 (a), (b) SEM 像、(c)平坦 領域 AFM 像、(d) 断面模式図。

図 1-9. 析出物抑制有効長 Lの基 板温度 T_s 依存性。実線は最適な 熱活性化型依存性の fitting 曲線。

図 1-10. 析出物フリー領域に作製した LSMO トンネル接合の光学顕微鏡写 真。(サイズ 2×10µm²)

類似研究との比較:

ペロブスカイト酸化物薄膜の平坦化技術は、 高温超伝導体薄膜において、stoichiometry か らずらしたアブレーションターゲットを用いる手 法や、off-axis で製膜する手法などが考案され てきた。 その多くが、基板上に到達する原子 組成を調整し、析出物の原因である組成ずれ を抑制する方法である。これに対して、本研究 での段差基板を用いる手法は、析出物の発生 自体を抑制するものではなく、あらかじめデザイ ンした領域に選択的に平坦領域を作製すること を目的としたものであり、従来とは原理的にも一 線を画する方法である。 さらに、従来の方法 は、度重なる条件出しや特殊な装置設計が必 要とされるなどの負担の大きい技術であったが、 本手法は、一般的な接合加工プロセスで必要 となるリソグラフィー装置とエッチング装置があ れば、製膜自体は通常のPLD 法でよいという簡 便さも利点として挙げられる。

図 1-11. LSMO トンネル接合における規格化 接合抵抗 *RA* の接合面積依存性。●:本研 究の析出物フリーLSMO 薄膜を用いた接合 (*T*=10K),□:従来型の LSMO 薄膜を用いた 接合(*T*=4.2K)[10]。

[10] A.Gupta and J.Z.Sun : *J. Magn. Magn. Mater.* 200, 24 (1999).
[11] Y. Ishii *et al.: Appl. Phys. Lett.* 85, 3800 (2004).

②. ランプエッジ型接合作製技術

電子の持つ電荷とスピンの自由度をともに利用する、スピンエレクトロニクスの研究が急速に広がりを見せている。La_{1-x}Sr_xMnO₃(LSMO)を代表とする遷移金属ペロブスカイト酸化物は、スピン 分極率 100%のハーフメタル材料であり、スピンエレクトロニクスを構築するのに有望な材料である。 これまで、LSMO 電極を用いた積層型スピントンネル接合の報告[10,12]が複数あったが、接合 抵抗分布に大きなばらつきや、温度の上昇に伴い急速に低下する TMR 特性などが見られた。

ランプエッジ型接合は、積層型接合同様、基板上での配置や、バリア材料の選択で自由度が ある。さらに、ランプエッジ型接合は、下部電極端部を接合に用いる構造で、接合の一辺に薄膜 の厚さを用いるため、微小面積接合の作製が可能であることや、平面型の構造のため接合間の 配線が容易であるという、積層型接合にない特徴もあり、将来のスピン注入デバイスの実現にも 有用であると考えられる。しかし、これまでにランプエッジ型スピントンネル接合の報告[13]は少な く、積層型接合と特性を比較もなされていない。ここでは、積層型接合との特性の比較を目的に、 ランプエッジ型スピントンネル接合の作製を検討した。

ランプエッジ型スピントンネル接合は、高温超伝導ランプエッジ型ジョセフソン接合の作製プロ セス[14]をもとに作製した。図 1-12(a)に作製したランプエッジ型スピントンネル接合の断面模式 図を示す。基板には、15mm□(100)LSAT 単結晶を用い、下部電極 LSMO(x=0.4、100nm)/層間 絶縁膜 LSAT(200nm)を PLD 法で基板全面に 870℃で連続成膜した。下部電極パターンをリソグ ラフィーで形成後、試料を ECR 励起 Ar プラズマを用いて斜めエッチングにより、室温でランプを 形成した。Ar プラズマの入射角を、基板法線方向から 60 度とすることにより、ランプ角度約 30 度 が得られた。レジスト除去、プラズマクリーニング後、PLD 法で LSAT バリア(4nm)、LSMO 上部電 極(200nm)を形成した。電子ビーム蒸着法で Au コンタクトを形成、最後にネガレジストを塗布し 保護層を形成した。

図 1-12(b)に作製した接合の SEM 写真を示す。作製した接合の線幅は 1, 2, 3, 4 µm である。 ランプ面の基板面からの傾き 30 度を考慮すると、接合面積は、0.2-0.8µm²と見積もることができ る。下部電極へのコンタクトには、十分に幅の広い接合を用いた。図 1-12(b)中の矢印は、印加

図 1-12.作製したランプエッジ型接合の(a)断面模式図、(b)SEM 写真。

する磁場の方向を表し、接合に流れる電流に対し平行な方向を H。、垂直な方向を Haとした。

図 1-13 に、100K における幅 1µm 接合のトンネル磁気抵抗(TMR)特性を示す。測定は、電流 バイアス 100nA で、外部磁場を-3 kOe $\leq H \leq$ 3 kOe 野範囲でスイープした。また、外部磁場 は $H_{4}(\boxtimes 1-13(a)) > H_{A}(\boxtimes 1-13(b))$ のに方向から印加した。 H_{4} 方向の外部磁場では、接合抵抗 が 3.3k Ωから 22k Ωに変化し、これは TMR の変化率で 550%に相当する。フリー層の保磁力は不 明虜であるが、ピン層では 80 Oe 程度である。一方、 H_{A} 方向に外部磁場を印加した場合、 H_{A} 方 向に比べ、磁気抵比は 350%程度低くなったが、保磁力はフリー層で 130 Oe 程度、ピン層では 260-470 Oe 程度と大きな値を示した。磁気抵抗変化も矩形的となり、フリー層とピン層の明瞭な 保磁力差を反映していると考えている。

図1-13より明らかなように、磁化の容易方向が H₆方向である。また、LSMO/LaAlO₃/LSMO 積 層型スピントンネル接合[15]では、フリー層とピン層の保磁力が、それぞれ 60 Oe、100 Oe であり、 ランプエッジ型接合における H₆方向の結果に近い。そのため、ランプエッジ型接合では、外部 磁場が H₆方向の場合、下部電極がフリー層、上部電極がピン層であると考えている。一方、外 部磁場を H_A方向に印加すると、保磁力が大きくなること、および、保磁力差が明瞭になることに ついては、今のところ説明できない。下部電極については薄膜端部を接合として利用しているた め、端部磁区構造[16]を考慮する必要がある。また、上部電極についても、下部電極構造を起 因とする結晶粒界により磁区構造が影響を受けるている可能性がある。

図 1-13.100(K)における幅 1µm 接合の抵抗の外部磁場依存性。 図中の H_P, H_Aは、 図 1-12(b)に記した外部磁場の向き。

成果の位置づけ:

金属強磁性体を用いたスピントンネル接合の研究では、将来の高集積化 MRAM 応用に向け て、微小接合作製技術の開発、スピン偏極電流の注入による磁化反転技術の開発がなされてい る。電極に遷移金属ペロブスカイト酸化物を用いる場合、ハーフメタル性というスピントロニクスに 非常に適した特徴を期待できるため、低電流密度なスピン偏極電流で磁化反転可能なスピント ンネル接合を開発できる可能性がある。また、ランプエッジ型接合は、微小面積接合を、比較的 容易に作製可能であることから、金属強磁性電極を用いたスピントンネル接合でも研究が進めら れている[17]。 [12] M. Bowen et al.: Appl. Phys. Lett. 82, 233 (2003).

[13] C. Kwon et al.: Appl. Phys. Lett. 72, 486 (1998).

[14] M.Verhoeven : Ph.D Thesis, 1996, University of Twente, Netherland.

[15] Y. Ishii *et al.: Appl. Phys. Lett.* **89**, 042509 (2006).

[16] H. Asada et al.: IEEE Trans. Magn. 33, 4001 (1996).

[17] H. Sugiyama et al.: J. Magn. Magn. Mater. 310, 2003 (2007).

③. ポリイミド層間絶縁膜作製技術

(La,Sr)MnO₃ (LSMO) を用いたスピントンネル接合の作製において、LSMO の持つスピン機能(ハーフメタル性)を損なわないように、低ダメージの微細加工プロセスが求められている。本研究では、低ダメージな接合層間絶縁膜技術として、ポリイミド(PI)層間絶縁膜を導入し、その作製技術の開発を進めている。

PIとは、繰り返し単位にイミド結合を含む高分子の総称であり、芳香族化合物が直接イミド結合で連結された芳香族ポリイミドなどを指す。電子回路応用の観点では、スピンコートによる成膜、高絶縁性、低誘電率等の観点から注目されており、絶縁基材、多層プリント配線基板の絶縁層などに応用されている。更に、通常のPIに感光材を添加、感光性を付与した感光性PIでは、通常のフォトリソグラフィにより、微細加工された絶縁層を形成できるため、微細加工プロセスにおける層間絶縁膜形成の簡略化が図れる[18]。ここでは、まずPIをLSMOスピントンネル接合の作製に適応可能かどうかを検討した。

図1-14(a)に、PI層間絶縁膜を用いて試作したLSMOスピントンネル接合の断面模式図を示す。 スピントンネル接合の作製は、通常用いるセルアライン SiO₂層間絶縁膜に代えて、感光性 PI を 用いた。感光性 PI は、スピンコートにより塗布、フォトリソグラフィ後、現像することにより微細加工

図 1-14.作製したスピントンネル接合の、(a)断面模式図、(b)TMR 特性。

を行った。図1-14(b)に、作製したスピントンネル接合の10Kにおける典型的なTMR特性を示す。 特性の詳細は後述するが、巨大なTMR比、8,300%を得ることができた。従来のSiO2層間絶縁膜 を用いたスピントンネル接合では、これまで得られた最大のTMR比が280%であったことから、PI 層間絶縁膜技術の優位性を示していると考えている。

次に、感光性ポリイミドを用いたスピントンネル接合では、再現性・接合特性のばらつきが悪い ことが明らかになったため、この原因を検討した。図 1-15(a)に感光性 PI を用いて作製したコンタ クトホールの SEM 写真を示す。感光性 PI 膜厚は 400nm、設計寸法は、1µm×3µm である。写真 より明らかなように、パターン形状が変形しており、また、コンタクトホール底部に残量物が存在す る。感光性 PI では、現像条件の範囲が狭く湿度の影響を受けやすく、現像残りなど残留物の発 生を招く可能性がある。これが、TMR 特性の再現性に悪影響を及ぼしている可能性がある。

残留物の影響を除くため、感光性のない PI 層間絶縁膜に対して、酸素プラズマによる微細加 エプロセスを行った。一般に、有機材料に酸素プラズマを照射すると、分解・除去することが出来 る。PI 層間絶縁膜を基板上にスピンコート成膜した後、フォトレジストでコンタクトホールをリソグラ フィーし、酸素 2Pa、RF 電力(13.56MHz、出力:40W)にて発生させた酸素プラズマを照射するこ とにより、微細加工を行った。形成したコンタクトホール(図 1-15(b))では、側壁に溝、底部に粒 子状物質が観察された。コンタクトホール周辺の PI 表面は平坦で粒子が観察されないことから、 観察された粒子は PI 由来で、酸素プラズマ照射中に発生したと考えられる。オーバーエッチン グを行うことで粒子の除去を試みたが、プラズマ照射時間の変化に伴う粒子形状の変化は認め られず、除去することはできなかった。

最後に PI に短波長の紫外(UV)光を照射することで、微細加工をすることを試みた。本方法も、 表面に付着した有機材料の除去技術として、一般的に用いられている。ここでは、感光性のない PI 層間絶縁膜を基板上にスピンコート成膜・乾燥させた後、通常のフォトレジストでコンタクトホー ルパターンをリソグラフィーし、波長 184.9nm と 253.7nm の UV 光 (28mW)を、酸素フロー中で照 射した。作製したコンタクトホールの SEM 写真を図 1-15(c)に示す。形状は滑らかで、側壁に溝 や、底部に残留物・粒子状物質も観察されない。設計寸法は 1µm×3µm であるが、角がとれ、全 体的に大きくなっていることがわかる。これより、UV 光を照射したときに発生する、活性酸素によ る等方的なエッチングのためと考えている。また、異なるバッチで作製した試料についても、コン タクトホール底部に残留物が観察されることはなく、再現性も確認された。

ビアコンタクトの電気伝導特性を評価するため、PI 層間絶縁膜(400nm)を用いた、Au-Au コンタ クトを作製した。作製した Au-Au コンタクトは、オーミックな特性を示した。同一基板上に作製した 4 つの Au-Au コンタクトについて、抵抗値は 0.78 Q であった。抵抗値は実際の酸化物 TMR 接合 の抵抗値(~1k Q 以上)に比べて小さく、ばらつきも 0.75-0.82 Q と小さかった。また、コンタクトホ ール底部に残留物などがないことを併せ考えると、UV 光照射による PI 層間絶縁膜の微細加工 は、実際の酸化物 TMR 接合に適応に有望であると考えている。

図 1-15.PI 層間絶縁膜に作製したビアの SEM 写真、(a)感光性ポリイミド、(b)酸素 プラズマ、(c)UV 光照射。

成果の位置づけ:

現在の微細加工プロセスは高度化の一途をたどっており、高価で複雑な大型の真空装置を当たり前のように必要としている。もし、高価な真空装置を使用することなく、デバイスを作製することができれば、経済的な効果は大変大きいと期待される。本研究で取り組んだ、PI に感光性を付与しリソグラフィーで微細加工する方法、および PIをUV-O3で微細加工する方法は、リソグラフィー技術こそ必要とするが、真空装置を必要とせず、また、300℃以下のプロセス温度で加工できることから、半導体技術を含めた多くの分野で適応可能であると考えられる。酸化物デバイスに限れば、多くの材料が500℃以上の高温プロセスや、Ar イオンミリングプロセスで、結晶構造や酸素欠損などのダメージを受けるが、本研究で開発したプロセスは、300℃で、かつ、光を用いた加工であるため、ダメージの発生が少ない、優れた加工技術であると考えている。

[18] K.Kikuchi *et al.: IEEE Trans.Appl.Supercond.* **13**, 119 (2003).

④ サブミクロンメサ構造作製プロセス技術

スピントンネル接合の磁気抵抗特性を調べる上で接合における磁区に関する情報は必要かつ 不可欠である。磁区の問題に関しては、反磁場エネルギー、磁気異方性エネルギー、磁壁エネ ルギーの総和が最小になるように形成されるため、予測がつきにくく実際に作製したものを測定 しないとわからないと言われることが多い。これまで作製されたLSMOのTMR素子の接合部が実 際に、どのような磁区構造をとるかについては、まだ検討が進んでいない。また、接合部が単一 磁区であるか、多磁区であるかが TMR 比に与える影響に関しても一定の知見はない。このため、 接合部の磁区を調べることを目的にサブミクロサイズのLSMOメサ構造作製プロセス技術の開発 を進めた。

通常 LSMO の TMR 素子の接合は、水銀のg線とh線の混合光の光学露光装置により作製 していたため、分解能が2ミクロン程度と低く、磁区に関する一連の実験を行うには、不適当であ った。そのため、LSMO のメサ構造作製プロセスには、光学露光装置に替わり分解能が実質的 に 40nm を有する JEOL 製電子線露光装置 (JBX6000FS)を用いた。LSMO 薄膜の作製には、レ ーザアブレーション装置の PLD を用い、900℃程度の高温が必要であるため、有機材料であるレ ジストをマスクパターンとして利用できない。そのため接合パターンの形成プロセスは、膜作製の 後工程となり、必然的にエッチング工程となる。エッチング工程で使用されるレジスト材料はネガ レジストであるが、エッチング耐性に優れたネガレジストの候補はほとんど市販されてこなかった。 しかし、最近、エッチング耐性に優れたいくつかのネガレジスト材料が市販され始めている。代表 的なものを以下の表1に記す。トクヤマ製TEBN-1は、露光量が7mC/cm²と桁違いに大きいた め、東京応化工業製 TGMR-EN103P を今回使用した。図1-16 の SEM 像は、このレジスト1層で 電子線露光を行い、現像、エッチング工程の後、有機溶媒(ピロリドン)にてレジスト除去を試み たものである。かなりの面積で、レジストが除去できなかった。そのため、剥離剤である有機溶媒 のピロリドンに易溶である化薬マイクロケム製 PMGI レジストを1層目とした2層レジストを採用した。 図 1-17 に示すように、2層レジストは、従来と同じく、表面層の TGMR を電子線により露光、現像 を行い、TGMRレジストパターンをマスクとして、PMGIを深紫外光により露光、現像を行うことによ り作製した。実際のプロセス条件は、以下の通りである。

電子線露光装置は、JEOL 製 JBX6000FS で加速電圧 50kV、照射電流 50pA を使用した。 LSMO 上にて 100nm 程度の微細パターンでメサ構造が作製できるプロセスを実機で確認するこ とを目的としたため、ライン上パターンと正方形を含めた長方形パターンでレジストパターンを作 製した。図 1-18 は、100nm×150nm で設計したパターンを 2 層レジスト法で作製したレジストの (a)表面および(b)斜めの SEM 像を示す。写真で見るかぎり、ほぼ満足のいく形状を有しているこ とを確認した。図 1-18(c)は、これを ECR エッチング装置により、約 5 分間アルゴンイオンミリング (Ar:0.1Pa、ECR 投入電力:400W、加速電圧:450V、イオン電流密度:3.5mA/cm²)した直後のレ ジスト像を斜め観察した SEM 像である。アルゴンエッチングにさらされる第1層のレジスト像は十 分に形状を保っていることが確認できた。図 1-19 は、本方法で LSMO(100nm)/STO において作 製した 100nm 線幅のライン形状でメサ構造を作製したものの SEM 像である。パーティクルが図左 下のパターンの一部を壊しているが、100nm 線幅のラインのメサ構造を作製することができた。

レジスト材料	TGMR-EN103P	TEBN-1	PMGI
レジストの型	ネガ型	ネガ型	ポジ型
感度(•C/cm²)	50	7000	
解像度(•m)	0.05	0.01	0.01
露光	電子線	電子線	深紫外線
現像液	TMAH	キシレン	TEAH

表1 電子線レジスト材料の特性

図1-16.Permalloy(30nm)/Ti(3nm)/Si上にTGMR-EN103P レジストを塗布し、電子線露光、現像、Ar ミリング した後、有機溶媒中でレジスト除去を試みた際の SEM 像。画面右の部分でレジストが全く除去でき ていない。

図 1-17. 2 層レジストの作製プロセス。表層の TGMR レジストは、電子線露光され、第2層の PMGI レジストは、深紫外光で露光される。

図 1-18.作製された2層レジスト像。サイズは 100nm x 150nm である。(a)表面から見た SEM 像。(b)斜め観察した SEM 像。(c)アルゴンイオンにより、エッチングした後に斜め観 察した SEM 像。ほぼ透明に近く見える部分は TGMR であり、写真で黒くみえる部 分が PMGI 層である。

 図 1-19. 2 層 レジスト法により LSMO(100nm)/STO において作製した、100nm 幅ラインパターンのメサ構造の SEM 像。左下の円形上の物体は、パーティクルである。

【4】強相関界面デバイス機能の研究

(a)強相関スピントンネル機能

①スピントンネル特性の高性能化 I:界面エンジニアリング

これまでの(La,Sr)MnO3 (LSMO)トンネル接合 では、格子整合のよい SrTiO₃ (STO)がバリアと して採用されてきた。しかし、LSMO/STO 超格 子の磁化測定の結果[5,19]などから、 LSMO/STO 界面での強磁性秩序の低下、す なわち界面 dead layer の形成が示唆され、これ が TMR 特性においても悪影響を与えているの ではないかと予想されていた。我々は、この LSMO/STO 界面 dead layer の物理的な起源と して、次のような界面電荷移動モデルを提案し た。図 1-20 に示すように、LSMO/STO 界面を 原子レベルで考察すると、界面最近接 Mn 層は、 STO 界面側では 100%Sr と接するために、デザ インした LSMO よりも高 Sr 濃度となることがわか る。その結果、最も強磁性秩序が安定になるよ うにデザインした Sr 濃度 x=0.3-0.4 から、反強 磁性相との境界 x~0.5 に近づくために界面強 磁性が急激に不安定化する。これは、電荷の 移動に注目すると、界面 Mn 層にホールが移 動していることに相当するが、その起源はSTO の Ti からであると推測できる。それゆえ、この 界面電荷移動モデルに基づいた場合、従来 の LSMO/STO 界面での問題点として、界面 Mn 層周辺が Sr-rich になること、STO の Ti の 価数が変動しやすく電荷を放出しやすいこと、 の2点が挙げられる。この LSMO 界面磁性の 改善のため、次の2つの対策を考案した。 (i)STO の替わりに、典型元素で構成され価 数が安定な LaAlO₃ (LAO)をトンネルバリアに 採用し、界面電荷移動を抑制する。同時に LAOにはSrを含まないという利点もある。(ii) 逆に、界面電荷移動を利用して界面ホール濃 度を最適化する。具体的には、LSMO/STO 界 面にLaMnO₃ (LMO)2 層を挿入してデザイン 上の界面 Sr 濃度を低くしておき、STO からの ホールの移動により実際の界面強磁性秩序の 最適化を実現する。この強相関界面エンジニ アリングに基づいた界面磁性を、磁化誘起第

図 1-20. LSMO/SrTiO₃ 界面での 電荷移動。

図 1-21. 各 LSMO/絶縁体積層膜におけ る磁化誘起第二高調波発生 (MSHG)強度(界面磁化に相当)の 温度依存性[21]。

二高調波発生(MSHG)を利用し、選択的評価を行ったところ、図 1-21 のように、従来型の LSMO/STO 界面に対して、LSMO/LAO、LSMO/LMO/STO いずれの界面においても強靱な界 面磁性を示す結果が得られた[6]。そこで、実際のスピントンネル接合においても、この界面エン ジニアリング手法を導入した。図 1-22 に示したように、接合においても、従来の LSMO/STO/LSMO 接合の 10K での TMR 比~50%に対して、LSMO/LAO/LSMO 接合では~ 230%、LSMO/LMO/STO/LMO/LSMO 接合では~170%と大幅な TMR 比の増大効果が得られ た[15]。 MSHG による界面磁性の評価と比較するために、理想的なスピントンネル過程が実現 されていると仮定して、各 TMR比を Julliere の式にしたがってスピン分極率に換算した。この界面 スピン分極率の温度依存性を図 1-23 に 示す。界面磁化に相当する MSHG 強度 の温度依存性(図 1-21)と比較すると、い ずれの系においても温度の上昇とともに、 TMR 比は MSHG の結果からの予想よりも 急速に減少した。その原因としては、トン ネルバリア内での欠陥準位を介した非弾 性伝導といった界面磁性以外の要素が、 高温領域の TMR 特性に影響を与えてい るためと考えられる。一方、比較的に理想 的なスピントンネル過程が実現されている と考えられる低温領域では、TMR 特性と MSHG の結果は、各界面の相対比として 定量的にほぼ一致している。したがって、 本研究結果は、界面電荷移動が LSMO/ バリア界面磁性を決定する主要因であり、 その最適化により実際に TMR 機能を向 上させることが可能であることを明らかに した。

成果の位置づけ:

超格子での実験などにより示された LSMO/バリア絶縁体界面での dead layer 形成は、LSMO トンネル接合の特性が不 十分なものであった要因の一つとして指摘 されてきた。その物理的な起源を考察し、 それに基づき具体的な界面デザインを提 案した。さらに、MSHG による直接的な界 面磁性の評価とあわせて、実際の TMR デ バイスでの検証を行い、これらの結果は低 温領域では十分な一致を示した。高温領 域での動作には課題が残ったが、強相関 界面エンジニアリング手法が LSMO スピン トンネル接合の機能拡大に極めて有効で あることが明らかになった。この手法は、多 くの強相関界面スピン伝導デバイスの開 発に活用されることが期待できる。

類似研究との比較:

Fert のグループでは、界面に組成傾斜を導入していない通常の LSMO/STO/LSMO 接合に おいて、低温で 1850%もの TMR 比を得ている[12]。彼らは LAO バリアの接合も作製しているが、 TMR 比は我々と同程度であり[20]、STO, LAO バリア接合での比較では、我々の研究結果と大 小関係が逆転している。その原因は不明であるが、薄膜作製条件の相違により(特に STO は作 製条件に特性が左右されやすい)、界面電荷移動の程度が変化している可能性はある。少なく とも我々の研究では、MSHG による界面磁性評価と実際の TMR 特性において、ほぼ整合した結 果が得られているので、この手法を引き続き活用しつつ、薄膜作製・接合加工条件の最適化を 図りたい。

[19] M. Izumi et al.: J. Phys. Soc. Jpn. 71, 2621 (2002).

図 1-22. (1)LSMO/STO/LSMO, (2)LSMO/ LAO/LSMO, (3)LSMO/LMO/STO/LMO/ LSMO 各接合 の 10K における TMR。

図 1-23. TMR 比から換算した各 LSMO 界面スピン分極率の温度依 存性。

[20] V. Garcia et al.: Phys. Rev. B 69, 052403 (2004).

② スピントンネル特性の高性能化 II: Ruドープによる保磁力差向上

スピントンネル素子は、2つの強磁性電極 の磁化配置が平行・反平行の場合のスピント ンネル伝導の差を利用したデバイスであるが、 我々の研究のように、両電極に同じ物質を用 いる際には、どのように磁化反平行配置を形 成するかが問題となる。 金属系のスピントン ネル接合では、一方の電極に形状異方性を つけることにより2電極間に明瞭な保磁力差が 形成されており、(La,Sr)MnO₃ (LSMO)トンネル 接合でも慣習的にこの手法が採用されてきた。 しかし、実際には LSMO における形状異方性 による保磁力増大効果は大きくなく、理想的な 矩形状の TMR 応答が得られることは稀であり、 また同じチップ内ですらも保磁力差の再現性 に乏しいことが問題視されるようになった。 ま た、図 1-24 に示した接合のように、低温領域 では理想的な矩形状の TMR 応答が得られて いても、温度の上昇とともに上下 LSMO 電極 の保磁力差は(特に 100K 以上で)急速に減 少し、200K 付近でほとんどなくなってしまう。 そのため、高温領域での TMR の減少に保磁 力差の減少が影響を与えている可能性もある。 そのため、再現性よく大きな保磁差が発現す る素子の開発が求められる。 最も単純な方 法は、LSMO は典型的な軟磁性材料であるの で、もう一方の強磁性電極の材料として内在 的に保磁力の大きいものを採用することである。 しかし、それがスピン分極率の低い材料であっ ては TMR 比が減少してしまい本末転倒である ため、現実的には難しい。 すなわち、 スピン 軌道相互作用の小さい LSMO は保磁力の制 御が困難で、extrinsic な方法(反強磁性層と の結合、形状磁気異方性など)で保磁力を増 大させるのは容易ではない。そこで本研究で は、intrinsic に硬い材料の開発を目指し、Ru をドープした LSMO 薄膜作製に挑んだ[21]。

目的組成はバルク多結晶との比較などから La_{0.6}Sr_{0.4}Mn₁₋,Ru₂O₃(LSMRO, *y*=0.05)に設定 し、その薄膜を SrTiO₃(001)基板上にパルスレ ーザー堆積法により作製した。 通常 LSMO

図 1-25.Ruドープ LSMO 薄膜の面直格子定数 の成長中酸素圧(PO2)依存性。挿入図は最 適条件で作製された薄膜の典型的な AFM 像で step&terrace が明瞭に見られる。これと 同様な表面をもつ薄膜は図中の丸印で、凸 凹な表面をもつ薄膜は四角印でプロットし た。白抜き印と黒印はそれぞれ成長温度 820℃、870℃で成長した薄膜を表す。

の良質な単結晶薄膜は還元条件で作製されるが、もう一つの母物質である SrRuO₃ は酸化条件 を好み、還元条件では、Ru が欠損してしまう。これが製膜上のネックとなる。 実際 LSMRO を 30mTorr より低い低酸素圧で蒸着すると、得られた薄膜からは Ru は検出されず、面直格子定数 (c)も y=0 薄膜と同程度に短かかった(~3.83Å、図 1-25、以下この膜を Ru 欠損膜と呼ぶ)。結 局 5%Ruドープ薄膜は基板温度(T_{sub}) 850℃、 P_{O2} ~40 mTorr 近傍でのみ再現性良く得られ、格 子定数は c~3.86Å であった。この LSMRO(y=0.05)薄膜の表面は step&terrace 構造をもち、し かもパーティクルさえ存在しない完全平坦膜である(図 1-25)。また、同様な条件で LSMRO(y=0.1)薄膜も得ることができた(c=3.883)。

図 1-26 に LSMRO(y=0, 0.05, 0.1)薄膜の磁化の磁場依存性を示す。y=0 薄膜の保磁力(H_c) は 5K でも 40 Oe にすぎないが、y=0.05 薄膜では 300 Oe、y=0.1 薄膜では 600 Oe になり、期待 通り、Ru ドーピングによって系統的かつ著しく増大することが分かった($P_{O2}=30$ mTorr, $T_{sub}=870^{\circ}$ C で作製した「Ru 欠損膜」では H_c は増加していない。)。

さらに、y=0.05薄膜では、y=0薄膜(LSMO, x=0.4)同様、高い金属的電気伝導性を維持していることが分かった(図 1-27)。不純物に敏感な残留抵抗でさえ、倍程度しか増加しなかった。しかも、 T_c は 355K で y=0 薄膜より 15K 高い。ただし、y=0.1 薄膜では若干強磁性・金属性が低下した。

以上のような LSMRO の優れた電気的磁気的特性は、ドープされた Ru は単なる不純物として 振舞っているのではなく、LSMO が元来有する二重交換相互作用を妨害しない範囲であれば、 強磁性・金属性を助長するような能力を有していると結論できる。LSMRO における保磁力の増 大は Ru の大きなスピン軌道相互作用と Mn-Ru 間の磁気的結合に起因すると考えられる。

図 1-26 La_{0.6}Sr_{0.4}Mn₁₋,Ru_yO₃ (y= 0, 0.05, 0.1)薄膜の温度 5K における磁化 (Mの磁場依存性。磁場は面内 方向にかけゼロ磁場冷却後に測 定。上図のグレーの線は"Ru欠損 膜"(870℃、30mTorr で成長した 薄膜)の M-Hカーブ。

図1-27. LSMRO 薄膜の磁化(*M, H*=500 Oe)、抵抗率(ρ)の温度依存性。 LSMRO薄膜(y=0, 0.05, 0.1)のデータは それぞれ破線、部分破線、実線で示し た。

この成果を基に、実際に下部 LSMO(680nm)/バリア層 LaAlO₃ (LAO) (1.5nm)/上部 La_{0.6}Sr_{0.4}Mn_{1-y}Ru_yO₃(y=0.05) (LSMRO) (280nm)構造からなる接合を作製した[22]。 図 1-28 (a)、 (b)に LSMO/LAO/LSMRO 接合、および比較のため同じ膜厚で作製した LSMO/LAO/LSMO 接合の 10K での TMR を示す。 上部電極を LSMO から LSMRO にすることで、対応する保磁力 が 1800e から 5100e に増大し、明瞭な反平行スピン配置が広い磁場範囲で実現できるようにな った。 この上下電極の保磁力の温度依存性を図 1-28 (c)に示す。 温度の上昇とともに保磁力 差は減少していくが、LSMO/LAO/LSMRO 接合の場合、TMR が消失する 200K 付近でも 1000e 以上の十分な保磁力差が残っている。

図 1-28. (a)LSMO/LAO/LSMRO, (b)LSMO/LAO/LSMO 各接合の 10K にお ける TMR 特性。 (c)両接合における上下電極の保磁力 H_cの温度依 存性。

成果の位置づけ:

この研究成果の意義は、単に、偶発的保磁力に左右されていたLSMO系MTJのデバイス応答 を改善しただけではない。デバイス開発という点では保磁力の制御とともに、非常に平坦性の良 い薄膜を作製できた点が重要である。これにより、段差基板による析出物の除去といった面倒 なプロセスを経ずに、種々の接合が容易に作製できるようになった。また、113Mn系ペロブスカイ トへのRuドーピングはバルクでは多結晶試料のみが得られており、単結晶育成の成功例はない。 LSMRO はスピン軌道相互作用を増強された強磁性金属であるため、磁気光学効果・異常ホー ル効果・磁気抵抗効果といった新奇な物性を示す可能性を秘めており、これを薄膜手法により 初めて単結晶化できたことは基礎物質科学的にも重要な成果と位置づけられる。

また、表向きにはほとんど報告されることはなかったが、LSMO スピントンネル接合における上下 LSMO 電極間の保磁力差マージンの少なさは、動作歩留まりにも影響し、研究遂行上の障害 となっていた。本研究で Ruドープ LSMO 薄膜により、LSMO の特性をほぼ保ちながら再現よく 保磁力増大効果が得られたことで、動作マージン拡大のメリットだけでなく、研究の幅も大きく広がり、例えば、反平行スピン配置状態を安定して実現することが求められるスピン注入実験など への展開も容易になった。

類似研究との比較:

ペロブスカイトマンガン酸化物の Mn サイトへの不純物置換は多くの研究例がある。ルテニウム に関しては Raveauらのグループにより系統的な研究がなされた[23]。彼らはルテニウムのみがペ ロブスカイトマンガン酸化物のもつ軌道秩序・電荷秩序不安定性を破壊し、かつ強磁性秩序を 安定化させることを初めて報告した。本研究は、その研究を基に着想したものであるが、Ru⁴⁺イ オンの軌道縮退と「重さ」に着目し、「スピン軌道相互作用の増強」というもう一つの重要な機能を 引き出すことに成功したという点で発展的意義をもつ。

また、LSMO スピントンネル接合の保磁力差を拡大させた例は、唯一、Fert らによって、上部 LSMO 電極の上にCo 薄膜を蒸着し、それを酸化させて反強磁性CoOとし、スピンバルブ接合と 同様の保磁力増大を図った報告があるのみである[12]。 彼らは、この保磁力増大効果が巨大 TMR 比を得た一因にも挙げているが、報告された TMR 応答は、磁場に対して非対称であり、そ の効果はまだ不十分であるといえる。

[21] H. Yamada et al.: Appl. Phys. Lett. 86,192505 (2005).

[22] Y. Ishii et al.: Appl. Phys. Lett. 87,022509 (2005).

[23] A. Maignan et al.: J. Appl. Phys. 89, 500 (2001), ibid 89, 2232 (2001).

③ スピントンネル特性の高性能化III:巨大な TMR 特性

本研究で作製した LAO バリアを有する LSMO トンネル接合の中で、10K において、巨大なトン ネル磁気抵抗比 8,300%(スピン分極率 99%)を 示すものが得られている。

図 1-29 に作製した MTJ の断面模式図を示す。 MTJ は我々の標準プロセスを元に、パルスレー ザー蒸着 (PLD) 法で作製した、上部電極 LSMO(28nm)/バリア LAO(1.5nm)/下部電極 LSMO(68nm)三層膜を用い、リソグラフィー技術 およびポリイミド層間絶縁膜を用いて作製した [11,18]。接合の面積は 3×20µm²の長方形で、 形状で上部電極に対し保持力を付与した。

図 1-29.作製した MTJ の断面模式図

接合抵抗は、冷却・外部磁場変化の履歴により変化したため、RA_pは、500 Oe の磁場中冷却 で測定した。RA_pは、上下電極磁化が平行な状態の規格化抵抗と定義する。一方、反平行状態 の規格化抵抗 RA_{AP}は、それぞれの温度での TMR 測定結果から評価した。図 1-30(a)に RA_p,RA_{AP}の温度変化を示す。RA_pと RA_{AP}の温度変化の特徴を明らかにするため、典型的な LSMO 接合(LAO バリア)、及び、CoFe 接合(MgO バリア)[24]について、併せてプロットした。ま た、LSMO 接合については、より詳細に比較するため、RA_p-T測定の最大値で規格化した。まず LSMO 接合と CoFe 接合を比較すると、その傾向は全く異なっていることがわかる。CoFe 接合で は、RA_pとRA_{AP}は、温度変化に対し単調に変化するのに対し、LSMO 接合では、100-150K 付近 に RA_pのピークがあり、そのピーク付近の温度から温度低下に伴い急速に PA_{AP}が急激に増加し

図 1-30. 平行状態および反平行状態における規格化抵抗 RA の温度依存性 (a) LSMO (28nm)/LAO(1.5 nm)/LSMO (68 nm)接合に対する規格化抵抗 RA(\oplus , \bigcirc)、 および典型的な LSMO/ LAO/ LSMO 接合(\diamond , \diamondsuit)、Parkin らによる CoFe/ MgO/ CoFe 接合 (実線、破線)[24]。添字 P と AP は、両 LSMO 電極の平行状態と、反平行 状態に対応する。本報告の接合は、他の二接合に対して、低温で RA_P・RA_{AP}の特徴 的な大きな変化を示す。(b)LSMO 接合に対する RA_P・RA_{AP}の温度変化。バイアス電 圧 V_bを変化させて表示。白抜き記号、および、塗りつぶし記号は、それぞれ平行状 態、反平行状態に対応する。図より明らかなように、RA_P・RA_{AP}ともに、150K 以下で、 1桁以上の変化を示す。

ている。この振る舞いは、他の研究グールプからも報告されているが、本実験ほどの大きな報告 はない。この特徴的な RA の変化を詳細に明らかにするため、図 1-30(b)に、R4pと RAAp の温度 変化を、バイアス電圧 V_bの変化と併せて示した。低温で大きな変化を明らかにするため、縦軸は 対数目盛りとした。図より、150K 以下で RAAp のみならず、R4pも1桁以上変化している。また、V_b を増加すると、RAp・RAAPともに減少していく。IV特性は 300K まで非線形で、全温度領域でスピ ン偏極したトンネル過程が支配的と考えられ、特に 150K の前後で様子が変わることはない。この 特徴的な RA の変化の原因が何であるのか、現時点で不明である。図中の 2 つの LSMO 接合で 異なるのは、層間絶縁膜に、従来の接合では SiO₂を、本報告ではポリイミドを用いている点のみ であることから、現在、両材料のプロセスに対する影響を詳細に検討している。

図 1-31(a)(b)に、典型的な TMR 特性の、10K における V_b依存性を示す。これらの TMR 特性 は、数回、外部磁場を掃引した後に行った。白丸および黒丸は磁場掃引の方向を示している。 図より明らかなように、巨大な 8,300%に及ぶ TMR 特性を V_b=100mV で得た。ここから V_b=150mV へ変化すると、TMR比は2,800%と小さくなったが、しかし対称的な TMR 特性が得られた。これら の結果は、LSMO 電極のハーフメタル性を反映していると考えている。Julliere の式に従えば、 TMR 比 8,300%はスピン分極率 99%に相当する。接合抵抗に占める電極の抵抗は、接合抵抗に 比べて数桁小さいため、不均一な電流分布に起因して大きな TMR 比を示しているという可能性 は除外できる[25]。

図 1-31 中の破線は磁場中冷却で測定した、各 V_b における RA_p の値を示している。TMR 特性 は外部磁場変化の履歴、およびバイアス電圧により、敏感に変化する。電極磁化一斉回転モデ ルでは、TMR 特性において、磁場中冷却した RA_p と、何回か外部磁場をスイープした後、電極 磁化が平行であると考えられるときの抵抗(ここでは RA_p *と定義する)は一致すべきであるが、図 1-31 に示すように一致していない。そのため電極は、低磁場でのスイープを行うことにより、複雑 で保持力の異なる磁区ドメイン構造を有していると考えられる。 RA_p と RA_p *の乖離は、 V_b が小さ いときほど顕著である。図 1-30(a) に示した接合では、10K/ V_b =10mV の時、 RA_{AP} =100K Ω µm²、 RA_p *=25k Ω µm²、 RA_p =400 Ω µm²程度であった。図 1-31(a)の結果と比較すると、 V_b の低下で RA_{AP} が大きなる、通常の金属 MTJ と同じ傾向を示しており、 RA_p はほぼ同じであるため、TMR 比は大 きくなると期待されるが、この接合の場合、 RA_p *が V_b の低下で大きくなるため、磁場スイープした 時の見かけの TMR 比は高々300%程度となってしまい、図 1-31(a)の結果 8,300%に遠く及ばない。

図 1-31. 作製した接合の 10K における TMR 特性、(a) *V*_b=100mV、(b) *V*_b=150mV。 TMR 特性は、数回、外部磁場を掃引した後に測定した。白丸および黒丸 は磁場掃引の方向を示している。破線は磁場中冷却で測定した *R*4_pの値 を示している。接合は *T*=10K, *V*_b=100mV で巨大な TMR 比 8,300%を示し ており、*V*_b=150mV とすると、TMR 比は 2,800%と低下したが、対称的な TMR 特性を示した。

現在、このバイアス依存性に対してピークを持つ TMR 特性について検討を進めている。先の多磁区ドメイン構造モデルを仮定すると、あたかもスピン注入磁化反転の臨界電流密度を超えたことにより、バイアス電流により各磁区ドメインが平行にトルクを受け、多磁区ドメイン構造が緩和された可能性もある。

成果の位置づけ:

本研究においては、巨大な TMR 比を有する MTJ の作製に成功したが、未だ同一基板上に作 製した TMR 特性ばらつきの改善や、ランごとの TMR 特性再現性の改善については問題が残っ ており、今後の研究において改善する必要がある。ハーフメタル性の観点から、遷移金属ペロブ スカイト酸化物は、スピントロニクスデバイスを開発する上で理想的であり、新しい原理に基づい たデバイスのプロトタイプ開発や、スピントンネル分光向けのスピン偏極電流源として適している と考えられる。また、本研究で開発したプロセス技術は、将来、高いキュリー温度を有する遷移金 属ペロブスカイト酸化物薄膜作製技術が開発されれば、すぐに MTJ の試作に適応できると考え ている。

[24] S. S. P. Parkin *et al.: Nature Mater.* **3**, 862 (2004).

[25] R. J. M.Van de Veerdonk et al.: Appl. Phys. Lett. 71, 2839 (1997).

④ スピントンネル分光への展開: (La,Sr)LaCoO3 のスピン状態観測

ハーフメタル強磁性体の応用例の一つとして、一方の電極にスピン分極率の高い磁性体を用いたスピントンネル接合(スピン偏極トンネル接合)において、対向電極に用いた磁性体のスピン状態の情報を得ることができることが挙げられる。 我々は、これまでに、両電極に (La,Sr)MnO₃ (LSMO)を用いたトンネル接合において、接合作製プロセスや LSMO/バリア絶縁体界面磁性の最適化を進め、その結果、バリアにLaAlO₃を用いた接合において、トンネル磁気抵抗(TMR)比として 10K において 200%超、すなわち界面スピン分極率としては 70%を上回る接合を再現よく作製することが可能になっている。 そこで、この高スピン偏極 LSMO を用いて、ペロブスカイト Co 酸化物のスピン状態観測を試みた。 ペロブスカイト Co 酸化物は、様々な電子スピン状態をとりうることが知られており、例えば LaCoO₃は、低スピン状態(t_{2g}^{6} , S=0)、中間スピン状態($t_{2g}^{5}e_{g}^{1}$, S=1)、高スピン状態($t_{2g}^{4}e_{g}^{2}$, S=2)が可能で、実際には低温で低スピン状態、高温で中間スピン状態となっていると考えられている。 LaCoO₃に Sr をドープすることにより、基底状態は非磁性絶縁体から強磁性金属へと変化するが、その電子スピン状態は自明ではない。 そこで、本研究では下部 La_{0.6}Sr_{0.4}MnO₃(膜厚 50nm) /バリア LaAlO₃(1.5nm) /上部 La_{0.5}Sr_{0.5}CoO₃ (LSCO) (50nm) スピン偏極トンネル接合を作製し、LSCO のスピン状態

図 1-32 にトンネル接合、LSCO 薄膜、LSMO 薄膜(基板はいずれも LSAT) 各試料の温度 5K における磁化の磁場依存性を示す。 Co,Mn 酸化物の大きく異なる保磁力を反映してトンネル接合において二段のヒステリシスが見られており、電極層の磁化は上下独立に振舞っていることがわかる。

図 1-33 に温度 10K における低バイアス(10mV) での典型的な TMR を示す。 R_{AP} (反平行磁化配 置)< R_{P} (平行磁化配置)である負の TMR が観測され た。LSMO の伝導電子は、ほぼ e_{g} ↑電子であること から、この負の TMR は LSCO の Fermi 準位 E_{F} に おいて↓スピン電子がマジョリティであることを示し ている。LSMO のスピン分極率を+70%として Julliere モデルを適用すると、-14%の TMR 比から推測され る LSCO のスピン分極率は-11%となる。

図 1-32.LSMO 薄膜, LSCO 薄膜、ト ンネル接合の磁化の磁場 依存性 (5K)。

この TMR はバイアス電圧の極性に関して、 LSMO/LaAlO₃/LSMO 接合にはなかった非 対称性を示した(図 1-34: ただし、LSMO に 対するLSCOの電位を Vとする)。この非対 称性は、RavindranらのLSCOのバンド計算 結果[27]に基づいて、以下のように解釈が 可能である。簡単のために、LSMO の伝導 電子は、完全に e₁た偏極していると仮定す ると、EF における LSCO の状態密度は tol バンドの方が↑スピンバンドよりも大きいため、 反平行磁化配置の方が平行磁化配置よりも トンネル確率は大きくなり、V~0 では負の TMR となる。このとき、バイアス電圧を KO 側で大きくしていくと、LSMO e_a↑バンドと LSCO tafバンド間のトンネルの寄与が急速 に増大するため(図 1-35(a))、LSCO 伝導電 子のスピン偏極は大きく減退し、負の TMR 比は急速に減少する。一方、1/>0 では LSCO ↑スピンバンドの寄与は、あまり変化 しない(図 1-35(b))ため、TMR比の減少は比 較的緩やかになると考えられる。本格的なス ピン偏極トンネル分光を行うためには、 LSMO/LaAlO₃, LSCO/LaAlO₃界面につい て、さらなる理解が必要であるが、本研究で はLSCOのスピン分極率が負であることを明 らかにし、またバンド計算例と定性的に一致 する TMR バイアス依存性を得た。

図 1-34.10K における TMR 比のバ イアス依存性。(LSMO 電極に対す る LSCO 電極の電位を正とする)

図 1-35. 有限バイアス V_b下でのLSMO-LSCO バンド間トンネル伝導の 模式図。(LSCO のバンド構造は文献[27]による) 成果の位置づけ:

高スピン偏極 LSMO 界面の応用として、LSCO のスピン状態を探索した。 X 線吸収スペクトロ スコピーや X 線磁気円二色性を用いて LSCO スピン状態を分析した例はあるが、本研究ではス ピントンネル効果を利用してスピン分極率の値を初めて報告した。

全ペロブスカイト酸化物トンネル接合における負の TMR の報告例は、我々のグループでの下 部 SrRuO₃/SrTiO₃/上部 LSMO 接合がある[28]。しかし、この時点では、積層型トンネル接合の 品質を大きく左右する下部電極の平坦性を確保するために、原子平坦薄膜が作製可能な SrRuO₃を採用しなければならない制限があった。すなわち、スピン偏極トンネル接合は SrRuO₃ とLSMO の組み合わせに限定されていた。これに対し、本研究の接合では、その後に開発した LSMO 薄膜の平坦化技術等を用いて、ハーフメタリック LSMO を下部電極側に用いているため、 平坦性などの要求の少ない上部電極側に材料選択の自由度がある。そのため、スピン偏極ト ンネル接合の対象を、他のペロブスカイト酸化物へ拡張することも容易になっている。

類似研究との比較:

LSMO を用いた同様の研究は、金属 Co を対象として行った例が報告されている[29]。 この 場合では、バイアス電圧に依存して TMR の反転が観測され、その振る舞いは Co-3dバンド構造 を反映したものであると考えられている。本研究でも、報告されている LSCO のバンド計算結果 が正しいならば、高バイアス領域で TMR の反転が予想されたが、実際には観測されなかった。 その是非に関しては、LSCO 薄膜には界面物性を含めて未だに不明な要素が多く、現時点では 一概には論じられない。

[26] Y. Ishii et al.: Appl. Phys. Lett.に投稿中.

[27] P. Ravindran *et al.*: *Phys. Rev.* B **60**, 16423 (1999).

[28] K. S. Takahashi et al.: Phys. Rev. B 67, 094413 (2003)

[29] J. M. De Teresa et al.: Phys. Rev. Lett. 82, 4288 (1999).

【4】強相関界面デバイス機能の研究

(b) 強相関界面伝導機能

①電界誘起抵抗スイッチング効果 I:遷移金属酸化物接合界面ショットキー

近年、Pr_{0.7}Ca_{0.3}MnO₃(PCMO) [30]やCrドープSrZrO₃、SrTiO₃(STO)など[31]のペロブスカイト 型遷移金属酸化物を金属電極で挟んだサンドイッチ構造に、電圧パルスを印加することにより異 なった抵抗値を可逆的に変化する抵抗スイッチング効果が観測され、それを利用した Resistance RAM (ReRAM)が次世代の不揮発メモリとして注目されている。実際、SHARP と Houston 大学のグループはPCMO 接合を用いて 64-bit RRAM を試作し、高速で動作したことを 報告している[32]。実用化に向けた研究開発もはじまりつつある電場誘起抵抗スイッチング効果 であるが、その発現機構は未だ解明されておらず、今後、素子特性の向上、制御のためには機 構解明が必要不可欠である。本 CREST テーマでは抵抗スイッチング効果の機構解明を目指し て研究を行った。

研究を始めるにあたって、我々は動作機構を解明する手がかりとして金属電極とペロブスカイト型遷移金属酸化物の接合抵抗に着目した。これまでの抵抗スイッチングの報告では、素子抵抗がペロブスカイト型遷移金属酸化物材料の抵抗率と素子形状から見積もられる理想的な素子 抵抗値に比べて数桁大きな値であり、抵抗変化もやはり理想的な素子抵抗値より数桁大きな値 の範囲で発現している[30]。この結果は、動作機構としてこれまで提案されてきた電圧印加によ るバルク(遷移金属酸化物自体)の金属 – 絶縁体転移モデルとは矛盾しており、抵抗スイッチン グ効果はバルク以外の部分の抵抗変化と考えられる。抵抗スイッチング効果を示す素子は、半 導体(もしくは絶縁体)的な特性を有する遷移金属酸化物と金属電極で構成された金属/半導体 /金属のサンドイッチ構造である[30-32]。このような金属/半導体接合では界面にショットキー障 壁が形成され、それにより大きな界面抵抗が生じる場合があり、抵抗スイッチング素子でもショット キー接合が大きな素子抵抗の起源となっている可能性がある。もし大きな素子抵抗の起源がショ ットキー障壁であるならば、遷移金属酸化物と組み合わせる金属電極材料の種類、即ち金属電極の仕事関数を変化させると、接触抵抗が変化することが予想され、また遷移金属酸化物側に注目すると、p型とn型の異なる半導体材料を用いると、電流-電圧特性などの輸送特性の極性(整流方向)が入れ替わることが予想される。これらの予想を基に、ショットキー障壁による界面抵抗が大きな素子抵抗の起源であるかどうか検証する実験を行った。

実験では金属/PCMO、金属/Nb-doped STO(Nb:STO、Nbドープ量 0.5 wt%)の2種類の接合 素子を測定に用いた。ここで PCMO はホール的なキャリアを有する p型半導体であり、Nb:STO は電子がキャリアの n型半導体である。金属/PCMO 接合は、まず PLD 法により下部電極の SRO (80 nm)と PCMO (100 nm)のエピタキシャル膜を STO 単結晶基板上に連続して積層し、次に上 部金属電極として SRO (20 nm)、Au (400 nm)、Ti (20 nm)の 3 種類の異なった材料を PCMO 層 上に製膜した。ここで SRO 上部電極は PLD 法によりエピタキシャル成長させ、Au と Ti の金属電 極は蒸着法により作製した。SRO と Ti 電極上にはさらに Au (380 nm)保護層を蒸着した。金属 /Nb:STO 接合は、Nb:STO 基板上に上部金属電極を金属/PCMO 接合と同じ方法により製膜し た。作製した積層構造はフォトリソグラフィーとAr イオンミリングにより電極サイズが 100-500 μm □のメサ構造に加工した。作製した素子は図 1-36 に示すような 3 端子法により膜面に垂直方向 の電流-電圧(*I-V*)特性を測定することで、その界面輸送特性を評価した。抵抗スイッチング特性 は、同測定系に電圧パルス回路を並列に挿入して測定した。

図1-36. (a)金属/PCMO 接合(p型)と(b)金属/Nb:STO 接合(n型)の模式図。

上部電極材料の Ti、Au、SRO の仕事関数はそれぞれ~4.3、~5.1、~5.3 eV であることから、 p型の PCMO と接合した場合、ショットキー障壁の高さ(接触抵抗)は浅い仕事関数を有する Ti で大きくなることが予想される。反対に n型の Nb:STO 接合では、深い仕事関数を有する SRO 電 極の場合にショットキー障壁が高くなることが予想される。

図 1-37(a)、(b)は金属/PCMO 接合と金属/Nb:STO 接合の *I-V*特性である。上記の予想どお り *p* 型の PCMO 接合では深い仕事関数を有する SRO と Au 電極の場合にオーミックな特性を

図 1-37. (a)金属/PCMO、(b)金属/Nb:STO 接合の電流-電圧特性。

示し、浅い仕事関する有する Ti 電極では整流性を示した。一方、n 型の Nb:STO 接合では Ti 電極の場合にオーミックな特性を示し、Au と SRO 電極では整流性を示した。また、PCMO 接合 では電圧のプラス側が順バイアスになっているのに対し、Nb:STO 接合ではマイナス側が順バイ アスになっており、極性が入れ替わっている。この整流特性(極性)は、それぞれ p型とn型半導 体のショットキーモデルで説明可能である。これらの結果から、金属電極と遷移金属半導体 PCMO、Nb:STO 接合の界面にショットキー障壁に相当する空乏層領域が形成されていることが わかる。

次に、PCMO 接合とNb:STO 接合ともに整流性のある *I-V*特性では電圧増加と減少過程で異なった電流値をとるヒステリシスが観測される。図 1-38(a)、(b)はそれぞれ Ti/PCMO, SRO/Nb:STO 接合の *I-V*特性の電流値を対数にした片対数表示であり、このような表示をすることによりヒステリシス特性を詳細にみることができる。まず、両方の接合ともプラス、マイナス両方の

図 1-38. (a)Ti/PCMO、(b)SRO/Nb:STO 接合の電流-電圧特性(片対数プロット)。

電圧バイアス領域で明確なヒステリシスが存在している。ここで*I-V*特性の高電流側のブランチを 低抵抗状態(LRS)、低電流側を高抵抗状態(HRS)と定義すると、そのヒステリシスの方向はPCMO、 Nb:STO 接合ともに順バイアスで高抵抗状態から低抵抗状態に、逆バイアスで低抵抗状態から 高抵抗状態に変化している。これまでの報告では、抵抗変化と電圧の印加方向の関係は議論さ れておらず、抵抗変化の極性を決定している要因は不明であったが、この実験では抵抗変化の 方向はショットキー接合への順または逆バイアスの方向と関係していることが示された。

次に高抵抗、低抵抗状態における界面伝導特性に関する知見を得るために、SRO/Nb:STO 接合の *I-V* 特性を詳細に解析した。エピタキシャル界面を有する SRO/Nb:STO 接合は Ti/PCMO 接合と比べて界面の欠陥に起因する不確定要素が少ないと思われ、伝導特性に関 する知見を得るのに適していると考えられる。SRO/Nb:STO 接合の順バイアス側の高抵抗状態 を見ると、log*I-V* 特性が線形関係を示しており、伝導過程は主に熱電子放出によると考えられる。 一方、低抵抗状態の log*I-V*特性は線形関係から大きくはずれており、低抵抗状態ではショットキ ー障壁にトンネルのような電流リークパスが形成され、その電流パスを流れる電子数が熱電子放 出で障壁を越えて流れる電子数よりも大幅に多くなっている可能性が示唆される。

以上の実験から、抵抗スイッチング効果の発現には界面のショットキー障壁が関与している可能性が示されたことから、次にショットキー障壁と抵抗スイッチング特性の関係について評価した。 実験としては、Nbドープ量の異なる数種類のNb:STO単結晶基板を用いてSRO/Nb:STOエピタキシャル接合し、ショットキー障壁の空乏層幅の変化が抵抗スイッチング特性に与える効果を調べた。ショットキー障壁の空乏層幅(W_a)は W_d =(2 $\epsilon_s \epsilon_o (V_{bi} - V)/qN_d$)^{1/2}の式で表され、半導体のドープ量(n型半導体の場合はドナー濃度 N_d)により変化する。(ϵ_s は半導体の誘電率、 ϵ_0 は真空誘電率、 V_{bi} は拡散電位。)従って、n型半導体であるNb:STOのNbドープ量を変化させると、図1-39に示すようにショットキー障壁の空乏層幅が変化する。図1-39はNbドープ量(x)を0.001から0.02まで変化させた場合のSRO/Nb:STO接合のI-V特性である。Nbドープ量が少なくなるに従って整流性が顕著になっている。この結果は、ドープ量が多い場合は障壁が薄いためトンネル効果による電流成分があるのに対し、ドープ量が少なくなると障壁が厚くなり、トンネル 効果が抑制されてショットキー接合本来の整流特性に近づくためと考えられる。実際、順方向の *I-V*特性から求めた理想因子 nは、x=0.001 の約 1.5 から x=0.02 の約 2.2 に増加しており、xの 増加とともにトンネル電流などの過剰電流が増加していることが分かる。

図 1-40 は、図 1-39 の *I*-*V*特性の電流値を対数表示にしたものである。ドープ量の最も多い *x*=0.02 の接合では *I*-*V*特性にヒステリシスが見られないのに対して、*x*≦0.01 の接合では抵抗ス イッチング効果の特徴であるヒステリシスが見られる。また、ドープ量の減少にともない逆方向側 で抵抗変化比(HRS と LRS の抵抗比)に対応するヒステリシスが大きくなっている。これらの結果 は、抵抗スイッチング効果の発現と抵抗変化比がドープ量、すなわち障壁の厚さに依存している ことを示しており、抵抗スイッチング効果がショットキー界面で発現していることを示す有力な証拠 であるとともに、空乏層幅を変えることで抵抗スイッチング特性を制御できることを示している。

A 1 55. No F シ 量(F) 振夜)の友 化による空乏層幅の変化の様子を 示す模式図と SRO/Nb:STO 接合の *I-V*特性の Nbドープ量依存性。

図 1-40. SRO/Nb:STO 接合の *I-V*特性の Nb ドープ量依存性(片対数プロット)。

以上の実験結果から、PCMOやNb:STOなど遷移金属酸化物接合で見られる抵抗スイッチン グ現象は、金属と酸化物半導体の接合界面にショットキー障壁に相当する空乏層領域が存在し、 その界面抵抗が変化している現象であることがわかった。また、高抵抗状態は熱電子放出、低 抵抗状態はトンネル効果のようなリーク電流が主な伝導過程となっていることもわかった。このよう な伝導過程の変化は、ショットキー障壁の空乏層幅の変化により説明することができる。高抵抗 状態では空乏層幅が厚いため電子はショットキー障壁をトンネルすることができず、主に熱電子 放出により伝導する。一方、低抵抗状態では空乏層幅が薄くなり、電子はショットキー障壁をトン ネル効果により通り抜けて伝導する。そして、極性の異なる電圧をショットキー障壁へ印加するこ とにより、この2つの状態を可逆的に行き来するというモデルを考えることができる。図 1-41 は、n 型の SRO/Nb:STO 接合における動作モデルを模式化したものである。

このモデルで抵抗スイッチング効果を説明するために重要となるのが、空乏層幅の変化を与 えている起源である。前出の空乏層幅の式からわかるように、ショットキー障壁のポテンシャル形 状を変化させる起源として、界面での電荷のトラップなどにより空乏層にかかる実効的な電界が 変化する、または実効的なアクセプターまたはドナー濃度が変化する、誘電率が変化することな どが考えられる。そのような可能性の中から、我々は電気化学的な効果により界面近傍で酸素イ オン(酸素欠陥)が拡散することで実効的なアクセプターまたはドナー濃度が変化することが、有 力な起源であると考えている。n型のNb:STOでは酸素欠陥はドナーとして働き、PCMOのような p型材料では酸素欠陥の増加は実効的なキャリア濃度を減少させることが知られている。従って、 酸素欠陥の拡散は実効的なキャリア濃度の変化に対してn型とp型で逆の働きをすることになり、 これが印加電圧の極性に対する抵抗変化の方向性が、n型とp型で逆になっていることの原因と 考えられる。抵抗スイッチング効果の動作機構について図 1-41 に示した n型の SRO/Nb:STO 接合の場合で説明すると、まず高抵抗状態は界面近傍の酸素欠陥密度が低く、空乏層幅が広 くなっている。この状態に順バイアスの電圧を印加すると、電界が強く印加される界面近傍にあ る酸素イオン(負電荷)が電極側へと拡散し、界面近傍に実効的なドナーとして働く酸素欠陥が 生成され、空乏層が薄くなる。このモデルを検証するため、低抵抗状態の SRO/Nb:STO 接合を 酸素雰囲気中でアニールする実験をおこなった。モデルでは、酸素雰囲気でのアニールにより 酸素欠陥密度が低くなり高抵抗状態へと変化することが期待されるが、実験でも低抵抗状態か ら高抵抗状態への変化が観測され、酸素欠陥が抵抗スイッチング効果に関与している可能性が 確認された。

TunnelingThermionic emission図 1-41. 実験結果から予想される SRO/Nb:STO 接合における抵抗スイッチング効果の動作
モデル:低抵抗・高抵抗状態のバンド構造。

本 CREST テーマでは、実験結果を基にペロブスカイト型遷移金属酸化物接合素子の抵抗ス イッチング効果の動作機構としてショットキー界面モデルを提案した。また、ショットキー界面の抵 抗スイッチング効果では、これまで制御できなかった抵抗変化の方向性がショットキー障壁へ順 または逆バイアス電圧を印加することで制御できること示し、ショットキー障壁の空乏層幅を変化 させることで抵抗変化比などのスイッチング特性が制御できることも明きらかにした。これらの研 究成果「33-36」は、ペロブスカイト型遷移金属酸化物の抵抗スイッチング効果を利用した ReRAM の開発を行う上で必要不可欠な素子特性の設計・制御の指針となるものである。一方で、抵抗ス イッチング効果はペロブスカイト型遷移金属酸化物以外にも2元系遷移金属酸化物を用いた素 子でも観測されており、2004年の Samsung による2元系遷移金属酸化物を用いた ReRAM の報 告以降[37]、2 元系遷移金属酸化物の研究が活発に行われるようになった。一般に同じ現象と 思われているペロブスカイト型酸化物と2 元系酸化物の抵抗スイッチング効果であるが、その特 性には大きな違いがある。いくつかの例外はあるものの、通常、ペロブスカイト型酸化物では極 性の異なる電圧を印加することで抵抗が変化するのに対し、2 元系酸化物では極性によらず印 加する電圧の強度を変えることで抵抗が変化する。このような動作モードの違いと素子抵抗の素 子サイズ依存性の違いから、ペロブスカイト型酸化物と2 元系酸化物では異なる動作モデルが 提案されている。ペロブスカイト型酸化物では我々が提案したように抵抗スイッチング効果は接 合界面で発現しているが、2 元系酸化物では絶縁体の中にフィラメント状の導電パスが形成され、 その導電パスの開閉により抵抗スイッチング効果が発現すると考えられている。今後の ReRAM 開発では、そのような材料による特性の違いを考慮しながら目的用途に合わせた開発を進めるこ とが必要であると考えられる。また、異なった特性をうまく融合して実用レベルの素子開発を目指 す道もあるように思われる。

成果の位置づけ:

本 CREST の研究により、ペロブスカイト型遷移金属酸化物接合素子における抵抗スイッチン グ効果の動作機構解明が大きく進展し、また ReRAM の特性設計・制御手法の開発に必要な多 くの知見を得ることができた。今後、この研究をさらに進展させることで、より詳細な動作機構の理解と、その動作機構に基づくスイッチング特性および劣化特性の制御手法が確立でき、それによって ReRAM 開発が大きく進展するものと期待している。

- [30] S.Q. Liu et al.: Appl. Phys. Lett. 76, 2749 (2000).
- [31] A. Beck et al.: Appl. Phys. Lett. 77, 139 (2000).
- [32] W.W. Zhuang et al.: Tech. Dig. -Int. electron Device Meet. p193 (2002).
- [33] A. Sawa et al.: Appl. Phys. Lett. 85, 4073 (2004).
- [34] T. Fujii et al.: Appl. Phys. Lett. 86, 012107 (2005).
- [35] A. Sawa et al.: Jpn. J. Appl. Phys. 44, L1241 (2005).
- [36] T. Fujii et al.: Phys. Rev. B 75, 165101 (2007).
- [37] I.G. Beak et al.: Tech. Dig. -Int. electron Device Meet. p587 (2004).

② 電界誘起抵抗スイッチング効果 II: ヘテロエピタキシャル p-n 接合

Nbドープ SrTiO₃と強相関電子酸化物からなるショットキー接合や p-n 接合に、外部から磁場や電界、または光を印加すると、その接合抵抗や静電容量などを劇的に変化させることができ、近年盛んに研究が行われている。これらの興味深い現象を理解するためには、接合界面の電子状態の理解が不可欠であるが、界面の伝道特性をドープ量を変えて系統的に調べた研究はこれまでほとんど報告されていない。そこで我々は、強相関電子半導体 La_{1-x}Sr_xFeO₃(以下 LSFO)とバンド半導体 SrTi_{0.99}Nb_{0.01}O₃(以下 Nb:STO)からなる酸化物へテロエピタキシャル p-n 接合に

おいて、系統的に Srドープ量を(x=0.4,0.5,0.67,0.8)かえた接合を作製し、界面の電流(I)ー電圧(V)特性と静電容量(C)ー電圧(V)特性を詳細に調べることを行った。

PLD 法によってエピタキシャル LSFO 薄膜を (001)Nb:STO 単結晶基板上に作製した。成膜した 膜は保護用に真空蒸着法で 300nm の Au を堆積 させた。また、フォトリソグラフィーと Ar イオンエッ チングを用いて 100µm² のメサ構造に加工した。 *I-V* 測定には 3 端子法を用い、電流方向は図 1-42 の挿入図のように Nb:STO 側から LSFO に向 けて正の電流が流れるようにした。

図 1-42 に、LSFO/Nb:STO 接合に 0V→7V→-1.5V→0Vの電圧を印加させたフォー ミング後の典型的な *I-V*特性を示す。*I-V*特性は (a)ヒステリシスのない整流特性を示すものと、(b) 低電圧側においてヒステリシスを示すものの2種 類があることがわかる。この2種類の接合は同一 基板上にランダムに分布していることから膜厚や 成膜温度の不均一さに起因するものでないと考え られる。また、各組成の試料を2,3枚ずつ作製し、 それぞれ20個以上の接合の*I-V*測定を行なった。 その結果、ヒステリシスを示した接合はx=0.4, 0.5, 0.67の試料で約40%、x=0.8の試料で約80%で あった。

まずヒステリシスを示さない接合に注目し解析する。 *I-V*特性の整流性はLSFOを *p*型、Nb:STOを *n*型 半導体とする典型的な *p-n*接合の整流特性として次

図 1-42. LSFO/Nb:STO 接合の *は-V*特 性。(a) ヒステリシスを示さない接合。(b) ヒステリシスを示す接合。(a)の挿入図は 素子に流した電流方向。

のように解析できる。LSFO と Nb:STO の比誘電 率を ϵ_r^{LSFO} と ϵ_r^{STO} とし、また LSFO の単位セルあ たりのアクセプタ量(x)を N_A^{LSFO} 、Nb 置換量に相 当するドナー量(単位セルあたり 0.01)を N_D^{STO} と すれば、 $\epsilon_r^{LSFO}/N_A^{LSFO} < \epsilon_r^{STO}/N_D^{STO}$ の関係が成 り立つことから、空乏層は主に n型半導体 Nb:STO 側に広がっていると思われる。そのよう な p-n接合のフォワード側の I-V特性は次のよう に表すことができる。

(1)

 $I = I_o exp(qV/nk_BT)$

ここで、nは理想因子、Tは温度、qは電荷、 k_B は ボルツマン定数、Laは Tに依存する係数である。 図 1-42(a)では、ドーピング量 xを増やしていくと、 log I-V の線形関係を維持したままの状態で電 流値が減少している。これはホールドープによっ て化学ポテンシャルが下方にシフトし、それによ ってビルトインポテンシャル V_{bi}STOが増加すること を示している。また、リバース側領域での接合特 性を評価するために、電圧を 0V→7V→0V とスキ ャンさせて C-V 測定を行なった。その結果、低電 圧側で1/C2-Vの関係にp-n接合で見られる直線 的な振る舞いを確認した。以上の I-V測定の結果 と C-V 測定の結果からそれぞれ求めた nとビルト インポテンシャル(V_{bi}STO)の x 依存性の結果を図 1-43に示す。ヒステリシスを示さない接合のnは組 成によらずおよそ 1.5 を示した。V_b^{STO}は xを増加 させていくと x=0.4の0.9eV から x=0.8の1.2eV へと線形に増加した。ここでリジッドバンドモデル

図 1-43. (a)理想因子 nと(b) ビルトインポテン シャル V_{bi}^{STO}のホールドープ量依存 性。赤丸は *I-V*にヒステリシスを示さ なかった接合、白丸は *I-V*にヒステリ シスを示した接合。(b)の挿入図は x=0.4, 0.8 の LSFO の予想されるバ ンド構造の模式図。赤い領域はキャ リアの占有領域で、網部分は局在 準位。

を考えた時、この V_b^{STO}の変化はLSFOのフェルミ準位がホールドープによってシフトしていること に対応している。しかし、ドープ量 x の増加に対してフェルミ準位のシフト量が 0.3eV 程度と大き いことや、V_b^{STO} が線形に増加した結果は、通常の半導体とは異なった振る舞いである。通常、p 型半導体のフェルミエネルギー(E_F)はホール量(p)の増加に対して k_BTln(N_v/p)の関数でシフトす る。ここで N_vは価電子バンドの状態密度である。このような通常の半導体との違いは、LSFO がホ ールドープされたモット絶縁体であることに起因すると考えられる。ここにホールドープ量を変化 させた LSFO の電子バンド構造を図 1-43 の挿入図 A と B に示す[38]。ホールをドープすると、 ギャップ内に局在準位が形成され、ドープ量の増加とともにこの準位が成長する。実際、光電子 分光により見積もった LSFO の x に対する化学ポテンシャルのシフト量は、同じ x の変化に対し て 0.3 から 0.5eV 程度線形に増加することが報告されており[39]、我々の実験結果と一致してい る。

次に、図 1-42(b)に示したヒステリシスを示す *I-V*特性に注目する。フォワード側の高抵抗状態 (HRS)はlog|*I-V*が直線になっている。また、低抵抗状態(LRS)の低電圧領域においてはlog|*I-V* が直線になっていない。この結果は以前我々が報告した SrRuO₃/Nb:STO 接合の巨大電界誘起 抵抗(CER)変化を示す接合の *I-V*特性[48]と一致しており、この低抵抗状態の振る舞いから、トン ネル電流のような過剰電流が流れているもしくは HRS と LRS で空乏層のポテンシャル形状が変 化している可能性が考えられる。しかしながら、*I-V*特性にヒステリシスを示す接合の *C-V*特性は、 ヒステリシスをもたない接合と同様にヒステリシスを示さなかった。また、*V_{bi}^{STO}*の平均はヒステリシ スを示さない接合と同じく *x* の増加に対し線形に増加し、その値も同程度であるといえる。これら の結果の意味するところは、*I-V*特性の違いにかかわらず HRS と LRS に空乏層のポテンシャル 形状に変化がないことを示している。つまりこの系における抵抗スイッチング効果は、空乏層のポ テンシャル形状が変化するよりむしろ空乏層に生じる共鳴トンネルのようなトンネルリークパスの 形成が原因であると推論できる。これらの現象を正しく理解するためには、今後さらに界面の化 学的、構造的特性を詳しく調べるとともに接合サイズをかえたときの伝導特性の変化を調べる必 要があると思われる。

成果の位置づけ:

Srドープ量をかえた強相関電子酸化物LSFOとNb:STO界面の電子状態を*I-V*測定や*C-V* 測定などの比較的簡易な測定手法で解析することに成功し、強相関電子酸化物の界面の電子 状態の研究に有意義な測定手法であることを証明した。また、ヘテロエピタキシャルな界面で *I-V*にヒステリシスを示す接合と示さない接合の電子状態を議論し、CER特性を示す材料やデバ イスのデザインを今後行う際に必要な情報の一端を提供できた[40]。

[38] H. Wadati *et al.: Phys. Rev.* B **71**, 035108 (2005).

[39] A. Fujimori et al.: Relat. Phenom. 124, 127 (2002).

[40] A.Yamamoto et al.: Appl. Phys. Lett. 90, 112104 (2007).

電場変調分光法を用いた強相関界面電子状態の観測

強相関電子酸化物において、電場を印加することで抵抗スイッチングが起こるという電界誘起 抵抗変化効果が近年発見され、フラッシュメモリーを代替する次世代不揮発メモリー材料の有力 候補として強相関電子系に注目が集まっている。我々のグループにより、この抵抗スイッチング が主に金属-酸化物あるいは酸化物ヘテロ接合界面で起こっている現象であるということまでは 解明されていたが、より詳しいメカニズムの解明のために、電場印加下での強相関電子酸化物 界面の電子状態を観測する手法が求められていた。そこで我々は、電場印加に伴う吸収スペク トルの変化を高感度で観測できる「電場変調分光法」という手法を用いて、界面電子状態を明 らかにするというテーマをスタートさせた。本研究ではその取り組みの第一弾として、n型高温超 伝導体の母物質である Sm₂CuO₄ (SCO) と n型バンド半導体である Nbドープ SrTiO₃ (Nb:STO) とのヘテロ界面に電場変調分光法を適用した結果、電界印加による Nb:STO から SCO への電子 ドーピングに伴う SCO の電子構造の変化を観測することに成功した [41]。

SCO 薄膜は、(100) Nb:STO 基板上にパルスレーザー蒸着法を用いて、基板温度 780℃、酸素 分圧 300 mTorr の条件下で作製した。基板は Nb ドーピング濃度が 0.01 wt.% (キャリア密度 1×10¹⁸ cm⁻³)のものを用いており、これは可視光領域でほぼ透明でありながら金属的な伝導性を 有するため、透明な下部電極としての役割も持つ。X 線回折により、作製した薄膜は c 軸配向し ており(c=11.99 Å)、a,b軸方向の格子定数が基板と揃ったコヒーレント成長をしていることを確認 した。次に、図 1-44 に示すような電場変調分光測定を行うための素子を作製した。まず、素子の 領域内で一様な電界を印加するために、SCO 薄膜上に厚さ6 nm の半透明な金を蒸着した後、 フォトリソグラフィーとアルゴンイオンミリングを用いてメサ構造を作製した。その後スパッタにより SiO2層間絶縁膜のコーティングを施し、さらに金蒸着により上部電極を形成した。また下部電極 である Nb:STO とは、アルミを蒸着してオーミック接合を形成した。素子サイズは 200 µ m□であり、 この領域内に光を集光して分光測定を行った。

電場変調分光測定は、パルスジェネレータにより 素子に570 HzのAC電場を印加した状態で、ランプ 光源からモノクロメータによって切り出した単色光を 素子上に集光し、AC電場に同期して変化する透過 光強度(ΔT)をロックインアンプにより検出した。得ら れる $\Delta T/T$ は吸収係数 α と、 $\Delta T/T=-\Delta \alpha d$ (dは 吸収変化が起こる領域の厚さ)の関係で結びつい ているため、電場印加に伴う界面の吸収変化を知る ことができる。

図 1-45 に SCO/Nb:STO ヘテロ接合の I-V 及び

図 1-44. *I*-*V*, *C*-*V*, 及び電場変 調吸収分光測定に用いた素 子の構造の断面図。 *C-V*特性の結果を示す。*I-V*特性は良好な整流性を示しており、この接合界面にバンド不連続と空乏層が存在していることを示唆している。また、*C-V*特性は 1/*C*が*V*に対して線形に変化していることがわかる。理想的な *n-N*ヘテロ接合では、*V*≫*kT/q*かつ $\epsilon_1 N_1 / \epsilon_2 N_2 \ge 1$ (ϵ は誘電率、*N*はキャリア密度、添え字 1,2 はそれぞれ SCO 及び Nb:STO を表す)の条件の下で、Schottky 接合と同様に 1/*C*が*V*に比例し、その*V*軸切片が拡散電位 *V_D*となる。得られた *V_D*は 1.3 V であり、伝導帯のバンドオフセットもほぼこれに等しい値であると考えられる。*I-V*及び *C-V*特性の結果から予想される、SCO/Nb:STO 接合のエネルギーダイアグラムを図 1-45 の挿入図に示す。挿入図に示すように、この接合に逆バイアスを印加することで Nb:STO 側の空乏層がさらに広がり、SCO 側に電子が注入されることが期待される。そこで逆バイアス印加下での電場変調分光測定を行った。

図 1 40. 3CO/ND.3TO (7) 口接日 の *I-V*及び *C-V*特性。挿入図は、 予想させるエネルギーダイアグラ ム。

図 1-46. (a) SCO 薄膜の吸収スペクトル 及び SCO/Nb:STO 接合における逆バイ アス印加下での電場変調吸収スペクト ル。(b) 電場変調スペクトルと化学ドー ピングによる吸収スペクトル変化の比 較。

図1-46(a) に、SCO薄膜の吸収スペクトル及びSCO/Nb:STO 接合の電場変調スペクトルを示 す。まず吸収スペクトルでは、1.7 eV にピーク構造が現れており、これは酸素の 2p バンドから上 部 Hubbard バンドを形成する銅の 3d (x^2-y^2)軌道への電荷移動(CT)遷移に相当する。また鋭い ピーク構造が見えていることから、この吸収が励起子吸収であり、薄膜の結晶性の高さを示唆し ているといえる。一方電場変調スペクトルは、(i) 印加電場の増大に伴う系統的な吸収変化量の 増大 (ii) CT エネルギー近傍での符号の反転、すなわち CT ギャップ内で $\Delta \epsilon > 0$ 、CT ギャップ 以上で $\Delta \epsilon < 0$ (iii) 1.47 eV に見られる等吸収点の存在、といった特徴を示している。符号の反 転及び等吸収点の存在は、逆バイアス印加によってスペクトル強度が高エネルギー側から低エ ネルギー側のギャップ内吸収へと移動したことを示唆している。このようなスペクトル変化は、 Nd₂CuO₄などの電子ドープ高温超伝導体の母物質に、Ce 置換によって電子をドープしていった ときの変化と大変よく似ている [42]。したがって電場変調分光を用いることにより、電界効果によ る Nb:STO から SCO への電子ドープを明確に観測することに成功したと考えられる。

電界によって誘起された電荷の量は $\Delta Q = N_2 \cdot W$ の関係から見積もることができる。-2 Vの 逆バイアス印加した状態では、 ΔQ は 2.1 μ C/cm² (ユニットセルあたり 0.02 個の電子)と求ま る。ここで、電界効果ドープによる吸収係数の変化 ($\Delta \alpha_E$) と、化学ドープによる吸収係数の変 化 ($\Delta \alpha_C$)を、どちらも同じ 2%キャリアがドープされた状態で比較してみる。 $\Delta \alpha_E$ は V = -2 V で測定した電場変調スペクトルから、注入されたキャリアが CuO₂ 面一層分の厚さ領域 (d=c/2 = 0.6 nm) に集中しているとして求めた。また $\Delta \alpha_{C}$ は Ce が 2% ドープされた SCO とノンドープの SCO の吸収係数の差から求めた。図 1-46(b) に示すように、 $\Delta \alpha_{E}$ と $\Delta \alpha_{C}$ はスペクトルの形 状だけでなく、その大きさも良い一致を示している。これは電場変調分光が優れた感度と定量性 を持つことを示している。

成果の位置づけ:

本研究によって、電界による酸化物界面の電子状態変化を光学的に検出する手法を確立する ことができた。この手法は様々な物質の接合界面に適用することが可能であり、今後電界誘起抵 抗変化効果を示す物質に適用することにより、当初の目的であった抵抗変化やメモリー効果のメ カニズムが明らかになることが期待される。また、強相関電子系の中でも高温超伝導体への電界 効果キャリアドーピングは、不純物効果の少ない状態での超伝導状態を観測する手法として基 礎物性の面で大変重要であるが、このようなクリーンなドーピングで得られる超伝導状態と化学ド ーピングで得られる超伝導状態の違いを探る上でも、本研究で用いた電場変調分光法は有力 な手法であると考えられる。

[41] M. Nakamura *et al.: Phys. Rev.* B **75**, 155103 (2007).

[42] S. L. Cooper et al.: Phys. Rev. B 41, 11605 (1990); S. Uchida et al: ibid. 43, 7942 (1991).

(2)研究成果の今後期待される効果

本グループで得られた主な成果をまとめると、(i)強相関スピントンネル機能の巨大化を目的に、 界面磁性を直接観察し、原子レベルで界面構造をデザイン・構築し、強相関界面磁性を最適化 するという「界面エンジニアリング手法」を確立した。(ii)界面エンジニアリング手法に基づき界面 磁性デザインを行い、デバイスプロセス技術を駆使してスピントンネル接合を作製し、接合特性 の高性能化を実証した。(iii)巨大電界誘起抵抗変化(CER)効果の解明を目指し、強相関界面エ ンジニアリング手法に基づき、金属電極と遷移金属酸化物からなる接合、および種々の強相関 酸化物へテロ接合を作製し、その接合特性から界面バンド構造を明らかにするとともに、CER 効 果のメカニズムとしてショットキー界面と界面準位での電荷蓄積効果からなるモデルを提案し実 験的に検証した。

ここで確立・開発した界面エンジニアリング手法は、今後、強相関酸化物界面で現れる様々な 特異でかつ未知な物性探索やその特徴を活かした新規なデバイス機能の実証を行う上で、有 用なアプローチとして大いに活用できると期待している。

また、高性能な強相関スピントンネル接合が再現性よく作製することができるようになってきて おり、この素子技術を利用して、今後は強相関酸化物の未知なるスピン状態を分析できるスピン トンネルスペクトロスコピー技術への展開が期待される。さらに、将来的にはスピントンネル素子 を組み合わせたスピン注入デバイスなどの三端子アクティブデバイスへの研究進展が期待でき る。

ここで進めてきた CER 効果の研究により、強相関酸化物接合における抵抗変化スイッチング現象の機構解明に大きく貢献してきた。CER 効果の解明は、不揮発性メモリとして大いに注目を浴びている抵抗変化型 RAM (ReRAM)素子構造設計・特性制御の開発に必要不可欠であり、今後のより詳細な研究により ReRAM 開発が大いに進展するものとして期待される。

3.2 北海道大学 小池研究グループ (1)研究実施内容及び成果

【5】走査プローブ顕微鏡による表面構造の研究

劈開性のある層状強相関マンガン酸化物である La_{2-2x}Sr_{1+2x}Mn₂O₇(LSMO)(x=0.30, 0.31, 0.35, 0.40, 0.42)を走査トンネル顕微鏡(STM)を用いて表面構造, 電子状態の評価を行った。 また、原子分解能を比較的容易に得ることができる電界イオン顕微鏡(FIM)、および電界放射 顕微鏡(FEM)を使用し、LSMOの表面構造の評価を行った。 図 2-1 (a) は La_{2-2x}Sr_{1+2x}Mn₂O₇ (x=0.31)を劈開した直後に温度 3.6 K で得られた STM 像 (55 × 55 nm²)を示す。バイアス電圧 V、トンネル電流 Iはそれぞれ、1.0 V、49.8 pA である。劈開面 は数十 nm 幅のテラスとステップからなっている。像中 a、b 上のラインプロファイルを(b) に示す。 2 つのステップの高さは、どちらも約 1.0 nm であり、Mn-O 2 重層の周期と一致する。テラスは平 坦ではなく、全面に 50 pm 程度の凹凸 (rms) が存在する。この構造は他の LSMO (x=0.30, 0.31, 0.35, 0.40, 0.42) 劈開面にも共通する特徴である。ただし、ステップの高さは 0.62 nm など 1.0 nm より小さいものも多数観察することができ、その場合もテラス面の凹凸は同様に存在した。

バイアス電圧(V:1.0, 0.2, -2.0, -1.5 V)を変え、数回 STM 観察した後、図 2-1(a)の中央部を 拡大した STM 像(13.3×13.3 nm², V:-1.5 V, I:102 pA)を図 2-2(a)に示す。右上から左下に かけて 0.76 nm 周期のストライプ状の構造が現れている。この周期的な構造は図 2-1(a)には現 れておらず、表面構造が変化したことを示している。このようなストライプ構造はこれまで報告され たことはなく、LSMO 表面の構造不安定性を示している。

画像取得中にバイアス電圧の極性を正負に数回変化させ取得した(a)と同一領域の STM 像を (b)に示す。矢印で示した上部3分の1の領域でバイアス電圧(1~3V,1 nA以下)の極性を変 化させており、その他の領域では(a)と同じバイアス電圧-1.5 V(31 pA)で取得したものである。

バイアス電圧の極性を変 化した領域では、表面の 構造が大きく変化し、凹凸 が増加している。その他の 領域でも表面構造は(a)か ら変化しており、新たな構 造が出現している。これよ り、バイアス電圧の極性変 化が LSMO の表面構造変 化の原因の一つになって おり、表面を破壊している ことが分かる。また、近傍 の領域にその影響が及び、 新たな周期的な構造の出 現の引き金になったと考え られる。

 $La_{2-2x}Sr_{1+2x}Mn_2O_7$ と類似の ペロブスカイトマンガン酸 化物 $La_{1-x}Sr_{1+x}MnO_3$ は、酸 素欠損が入ると電子、およ びイオン伝導を示すことが 知られており、この特性か ら燃料電池の陰極材料と して使用されている。 Beltzner 等 は $La_{1-x}Sr_{1+x}MnO_{3-\delta}$ において 高温での酸素の拡散係数

図 2-1.(a) La_{2-2x}Sr_{1+2x}Mn₂O₇(x=0.31) 劈開面の 3.6 K での STM 像 (55 x 55 nm², V:1.0 V, I:49.8 pA). (b) *ab* 間のラインプロファイ ν_{\circ}

図 2-2. (a) La_{2-2x}Sr_{1+2x}Mn₂O₇(x=0.31) 劈開面の 3.6 K での STM 像(13.3×13.3 nm², V:-1.5 V, *I*:102 pA). (b) (a) と同 一場所の STM 像(*V*:-1.5 V, *I*:31 pA). ただし, 矢印の部分 のみバイアス電圧の極性(1~3 V, 1 nA 以下)を変化させ た。

を実験的に求めており[1]、また Cherry 等は欠陥を通して酸素がホッピングする際の活性化エネ ルギーを 0.86 eV と計算で求めている[2]。一方、Jia 等は高温でアニール処理した SrTiO₃、 YBa₂Cu₃O₇ 等のペロブスカイト物質で酸素欠陥が配列することを透過電子顕微鏡で観察してい る[3]。以上を考慮すると、図 2-2で見られたストライプ構造は酸素の欠陥の配列である可能性が ある。LSMO の劈開時、劈開面に酸素欠陥がランダムに導入され、それがバイアス電圧の極性 変化等の刺激により、新たなストライプ構造をとる。このシナリオによれば、図 2-1 (a) の STM 像の 凹凸は酸素欠陥による。酸素欠陥がどのように Mn-O 面で配列するかを図 2-3 に示した。赤丸 が Mn、青丸が O を表し、ジグザグの黒線が酸素欠 陥の入る場所を表す。結晶面は図 2-2(a)のストラ イプ構造の方向を再現するように回転している。 (b)で現れているストライプ状の構造も[010]、[100] 方向に酸素欠陥が連なることで説明することができ る。このとき、図 2-1(a)のステップの方向は[010]と なる。LSMO 劈開面をノンコンタクトモードの AFM により、表面に電界を印加しない状態で、かつ極力 探針の影響を排除した状態で表面構造を観察する ことも行った。その結果も表面の凹凸は STM 像と同 様に観察された。

これまで、LSMOの表面原子構造は Rononw 等を 除いて観察されていない。しかし、Ronnow 等も劈 開面のごく限られた領域で、欠陥等の存在により原 子 30 ユニットセル程度が観察されたと主張している [4]。その他の部分では、凹凸が小さすぎるため原 子像は観察できないと主張している。このため、 LSMOの表面原子構造はいまだに観察されていな いと言ってよい。

次に、La_{2-2x}Sr_{1+2x}Mn₂O₇ (x=0.40) 劈開面のコン ダクタンス d//dVのバイアス電圧依存性を図 2-4 に 示す。青線はSTM 探針が試料面から離れている条 件(V:0.97 V, I:1.2 nA)で,赤線は探針が試料面 に十分近づく条件(V:-0.28 V, I:10.0 nA)で得ら れたものである。青線では約-0.4~0.25 V の範囲 で状態密度がゼロとなるギャップが存在し、試料表 面が絶縁体的であることを示す。この絶縁体的特 性は他の LSMO(x=0.30, 0.31, 0.35, 0.40, 0.42)

図 2-3. LSMO 表面構造の酸素欠陥 モデル。

図 2-4. LSMO のコンダクタンス dI/dVの バイアス電圧依存性. 青色, 赤色のライン は探針固定条件をそれぞれ (0.97 V, 1.2 nA), (-0.28 V, 10.0 nA)としたもの。

劈開面全てに共通する特徴である。赤線では状態密度が大きく増大しギャップが消失している。 これは探針が試料に十分近づくことで探針からの電子が表面絶縁層をトンネルし、絶縁層下の LSMO内部の電子状態により変調されたためと考えられる。ただし、多くのLSMO劈開面では探 針を近づけてSTSを行っても、絶縁体的なコンダクタンスしか得られないものがほとんどであった。 Freeland等[5]がX線共鳴磁気散乱法を用いLSMOの表面1nmのみが絶縁体的で、強磁性が 消失することを報告しているが、彼らの結果は上記の結果を支持する。

スピン偏極走査電子顕微鏡(スピン SEM)で LSMO 劈開面の磁区構造を評価しているが、 表面絶縁層を通して直下の磁区構造を観察していると考えられる。スピン SEM のプロービング 深さは約1 nm であるので、それを可能にしていると思われる。

図 2-5 に 3.6 K での La_{2-2x}Sr_{1+2x}Mn₂O₇(x=0.35)の STM 像のバイアス電圧依存性を示す。

図 2-5. マルチバイアスモード、3.6 K で観察した La_{2-2x}Sr_{1+2x}Mn₂O₇(x=0.35)の STM 像(13.3 x 13.3 nm², *I*:10 pA)のバイアス電圧依存性。(a):-2.5 V, (b):-1.5 V, (c):1.5 V, (d):2.5 V

STM 像はマルチバイアスモードで観察し、各バイアス電圧の像をほぼ同時に取得している。バ イアス電圧はそれぞれ、(a):-2.5 V, (b):-1.5 V, (c):1.5 V, (d):2.5 V となっている。(a)、 (b)では、約1 nm の輝点が1 nm 間隔で並んでいることが分かる。しかし、(c)では(a)、(b)で 見られた輝点が消失し、大きな輝点が数個現れている。(d)では、また(a)、(b)と似た構造が 現れている。これらの輝点は元素、あるいは Mn の価数の違いと密接に関わっていると考えら れるが、現状これを区別する手段はない。このようなナノメータサイズの構造がバイアス電圧で 大きく変化することはこれまで報告されておらず、今後より詳細な実験が必要である。

STMでLSMO表面原子構造の評価することが困難な状況のため、電界イオン顕微鏡(FIM)にて 原子構造の観察を試みた。LSMO 試料は図 2-6(a)に示すように集束イオンビーム(FIB)にて探 針状に加工し、その先端の曲率半径を 38 nm まで先鋭化した(図(b))。この探針を結像ガスとし てHe:4.5×10⁻⁶ Torr を使用し、15.3 kV、130 K の条件で FIM 観察を行った。FIM 像は 30 フレ ーム/秒でリアルタイム観察し、そのスナップショットを図 2-7(a)に示す。また、その 1/30 秒後の スナップショットを(b)に示す。多数の輝点は原子を表し、安定に光っているものと、輝点が出現、 あるいは消滅し、あたかも表面上を移動するかのようなものが見られた。これは LSMO 表面の原 子構造を初めてリアルタイムで観察したものである。(a)の緑色の矢印で示した輝点は 1/30 秒後 に消失するものを表し、(b)の赤色の矢印は出現した輝点を表す。FIM では、表面から飛び出し

た原子ほど電界が集中するため、そこで He がイオン化され、明るく光ることになる。通常、 ステップとテラスからなる表面ではステップ に位置する原子が主に輝くことになる。この LSMOのFIM像では明確なステップらしきも のは確認できず、規則的な配列もあまり見ら れない。図 2-8(a)に FIM の拡大像示す。 (b)は(a)の1/30秒後の同一場所のFIM像 である。矢印で示した場所に輝点が現れて いることが分かる。通常、このようなことは金 属探針などでは起こらず、LSMO 特有の現 象であり、輝点が現れた場所に原子が移動 してきたと考えられる。FIM 観察中、常時こ の現象は現れた。

LSMO 探針先端に分極した He 原子が衝 突し、O 原子等が He 原子の運動エネルギ ーをもらい表面上を動いている可能性があ る。そこで、FEMでLSMO先端を観察するこ とを試みた。FEM では結像ガスを必要とし ないので、超高真空中での実験が可能であ る。FEM は FIM の探針等の配置を変えるこ となく、印加電圧の極性を変更するのみで 観察することが可能であり、FIMとFEM での 倍率は通常同一である。

LSMO 探針を図 2-7 の FIM 観察後に、真空度 5×10⁻⁹ Torr、130 K で FEM 観察した結果を図 2-9 に示す。印加電圧は-5.3 kV である。FIM と同様、30 フレーム/秒でリアルタイム観察を行っている。(a) はスナップショットの1 例であり、その 1/30 秒後の像を(b) に示す。輝点はかなり大きくなっているが、FIM 像と同じ特徴をもつ。つまり、輝点は原子を表し、安定に光っているものと、輝点が出現、あるい

図 2-6.(a) FIB で微細加工した LSMO .(b) LSMO 探針先端部の TEM 像。

図 2-7. (a)La2-2XMNO7(X=0.31)の130Kでの FIM 像。(b)(a)から 1/30 秒後の FIM 像。緑色 の矢印は消失する輝点を、赤色は出現した輝 点を表す。

図 2-8. (a) FIM の拡大像, (b) (a)の 1/30 秒 後の FIM 像。

は消滅し、あたかも表面上を移 動するかのようなものが見られた。 (a)の緑色の矢印で示した輝点 は1/30秒後に消失するものを表 し、(b)の赤色の矢印は出現した 輝ている。

FEM の分解能は通常 2 nm 程 度であるため、FIM で観察された 多くの原子は識別できなくなって いる。しかし、原子 1 個が飛び出 しており、そこから選択的に電子 が放出されると、輝点は 2 nm 程 に拡がるが、原子を観察すること は原理的に可能である。そのよう

図 2-9. (a) La_{2-2x}Sr_{1+2x}Mn₂O₇ (x=0.31)の 130 K での FEM 像. (b) (a) から 1/30 秒後の FEM 像. 緑色の矢 印は(b) で消失する輝点を, 赤色の矢印は(b) で出現 した輝点を表す。

な原子が観察されていると考えられる。同様な FEM 観察を 10⁻¹⁰ Torr 台、また、4.5×10⁻⁶ Torr の He ガス中でも行っており、図 2-9 と同様な結果を得ている。これより、出現、あるいは消失する 輝点は He との衝突とは無関係であることが分かった。STM 観察結果とあわせて考えると、O 等が 印加電界によって表面を移動し、それが FIM、FEM で観察されている可能性がある。

(2)研究成果の今後期待される効果

La_{2-2x}Sr_{1+2x}Mn₂O₇劈開面を酸素中アニール等により安定化することで、原子分解能で表面の構造、電子状態の評価を行う。また、よりデバイスに近い LSMO 薄膜にこれまでの技術を応用する。

電界イオン顕微鏡(FIM)、および電界放出顕微鏡(FEM)を活用することによって、 La_{2-2x}Sr_{1+2x}Mn₂O₇ 表面原子構造を直接リアルタイムに観察した。この手法は表面構造の研究に 有用な知見を提供する手段になる可能性があるので、その応用を探っていきたい。特に、 La_{1-x}Sr_{1+x}MnO₃ はスピントロニクスデバイスばかりでなく,燃料電池の電極材料として有望である が、酸素欠陥が重要な役割を果たす。この FIM、FEM を La_{1-x}Sr_{1+x}MnO₃ の酸素欠陥の研究に適 用できるか、その可能性を探りたい。

[1] A. Belzner et al.: Solid State Ionics, 40/41, 535 (1990), Solid State Ionics, 57, 327 (1992).

- [2] M. Cherry et al.: J. Solid State Chem. 118, 125 (1995).
- [3] C. L. Jia *et al.:* Science, **299**, 870 (2003).
- [4] H. W. Ronnow et al.: Nature, 440, 1025 (2006).

[5] J. W. Freeland et al.: Nature Mater. 4, 62 (2005).

4 研究参加者

(1) 産業技術総合研究所	赤穂研究グループ
(T		カゴボリフロノフレー ノ

GL	氏名	所属	役職	参加時期
0	赤穗 博司	產業技術総合研究所	可研究センター目	H15.10 \sim
		強相関電子技術研究センター	画研 九ビング 一 文	H20.3
	山広報司	產業技術総合研究所	扨槵浩チール目	H15.10 \sim
	/川四] 小臣口]	強相関電子技術研究センター	旭伸迫ノーム文	H20.3
	化蓝 司	產業技術総合研究所	デバイスチーム	H15.10 \sim
	在膝 74	強相関電子技術研究センター	主任研究員	H20.3
) 一	產業技術総合研究所	超構造チーム	H15.10 \sim
	(辛 彰)]	強相関電子技術研究センター	主任研究員	H20.3
		產業技術総合研究所	デバイスチーム	H15.10~
		強相関電子技術研究センター	主任研究員	H20.3

山田 迷子	産業技術総合研究所	超構造チーム	H16.2 \sim
山田 伯不	強相関電子技術研究センター	研究員	H20.3
田昭蔭 百	産業技術総合研究所	デバイスチーム	H17.10 \sim
平均脉 共	強相関電子技術研究センター	研究員	H20.3
小洲 和去	産業技術総合研究所	アドバイザー	H15.10 \sim
	強相関電子技術研究センター		H20.3
石壯 淤司	産業技術総合研究所	CPEST 研究昌	H16.2 \sim
石井 宿り	強相関電子技術研究センター	UNEST 研元頁	H19.8
山木 見上	産業技術総合研究所	CDEST 研究昌	H16.10 \sim
山平 光生	強相関電子技術研究センター	CREST 圳九貞	H19.9
山村 佴田	產業技術総合研究所	CDEST 研究昌	H17.4 \sim
甲们 傻力	強相関電子技術研究センター	CREST 圳九貞	H19.12
麻木 井山	產業技術総合研究所	テカーカルフタッフ	H16.2 \sim
膝平 夹可	強相関電子技術研究センター	フクールルスタッフ	H18.3
蓝井 碑士	產業技術総合研究所	CDEST 研究補助昌	H15.12 \sim
膝升 健芯	強相関電子技術研究センター	CRESI 初九冊叻貝	H18.3
士田 吉理乙	產業技術総合研究所	CREST	H16.10 \sim
口口 具埋丁	* 強相関電子技術研究センター	チーム事務員	H19.3
湛水 安了	產業技術総合研究所	CREST	H19.4~
佣小 天丁	強相関電子技術研究センター	チーム事務員	H20.3

(2)北海道大学 小池研究グループ

GL	氏名	所属	役職	参加時期
0	小池 和幸	北海道大学 大学院理学研究 院物理学部門	教授	H15.10~ H20.3
	松山 秀生	北海道大学 大学院理学研究 院物理学部門	助教授	H16.4~ H20.3
	來田 歩	北海道大学 大学院理学研究 院物理学部門	CREST 研究員	H17.1~ H19.3
	田畑 雅敏	北海道大学 大学院理学研究 院物理学部門	大学院生 CREST 研 究補助員	H17.4~ H19.5
	平木 哲也	北海道大学 大学院理学研究 院物理学部門	大学院生 CREST 研 究補助員	H16.4~ H17.3
	藤野 路子	北海道大学 大学院理学研究 院物理学部門	大学院生 CREST 研 究補助員	H17.4~ H19.3
	佐々木 章悟	北海道大学 大学院理学研究 院物理学部門	大学院生 CREST 研 究補助員	H18.4~ H20.3
	佐々木 広器	北海道大学 大学院理学研究 院物理学部門	大学院生 CREST 研 究補助員	H19.4~ H20.3
	村木 ゆず	北海道大学 大学院理学研究 院物理学部門	大学院生 CREST 研 究補助員	H18.4~ H20.3
	林 愼子	北海道大学 大学院理学研究 院物理学部門	CREST 研究補助員	H16.4~ H16.11

5.招聘した研究員等

なし

6 成果発表等

(1)原著論文発表 (国内誌0件、国際誌17件)

- H. Yamada, Y. Ogawa, Y Ishii, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, "Engineered interface of magnetic oxides", Science., **305**, 646 (2004).
- Y. Ishii, H. Sato, A. Sawa, T. Yamada, H. Akoh, K. Endo, M. Kawasaki, and Y. Tokura, "Precipitate-free films of La_{1-x}Sr_xMnO₃ grown on the substrates with artificial step edges", Appl. Phys. Lett., 85, 3800 (2004).
- A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr_{0.7}Ca_{0.3}MnO₃ interface", Appl. Phys. Lett., 85, 4073 (2004).
- A. Odagawa, H. Sato, I. H. Inoue, H. Akoh, M. Kawasaki, Y. Tokura, T. Kanno, and H. Adachi, "Colossal electroresistance of a Pr_{0.7}Ca_{0.3}MnO₃ thin film at room temperature", Phys. Rev. B, 70, 224403 (2004).
- T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, "Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO₃/SrTi_{0.99}Nb_{0.01}O₃", Appl. Phys. Lett., 86, 012107 (2005).
- A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Highly rectifying Pr_{0.7}Ca_{0.3}MnO₃ /SrTi_{0.9998}Nb_{0.0002}O₃ p-n junction", Appl. Phys. Lett., 86, 112508 (2005).
- H. Yamada, M. Kawasaki, Y. Tokura, "Ru-doped La_{0.6}Sr_{0.4}MnO₃ thin films as a coercivity tunable electrode for magnetic tunnel junctions", Appl. Phys. Lett., **86**, 192505 (2005).
- Y. Ishii, H. Yamada, H. Sato, H. Akoh, M. Kawasaki, and Y. Tokura, "Perovskite manganite magnetic tunnel junctions with enhanced coercivity contrast", Appl. Phys. Lett., 87, 022509 (2005).
- A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Colossal electro-resistance memory effect at metal/La₂CuO₄ interfaces", Jpn. J. Appl. Phys., 44, L1241 (2005).
- Y. Ishii, H. Yamada, H. Sato, H. Akoh, Y. Ogawa, M. Kawasaki, and Y. Tokura, "Improved tunneling magnetoresistance in interface engineered (La,Sr)MnO₃ junctions", Appl. Phys. Lett., 89, 042509 (2006).
- H. Yamada, M. Kawasaki, T. Lottermoser, T. Arima, and Y. Tokura, "LaMnO₃ /SrMnO₃ interfaces with coupled charge-spin-orbital modulation", Appl. Phys. Lett., **89**, 052506 (2006).
- A. Yamamoto, A. Sawa, H. Akoh, M. Kawasaki, and Y. Tokura, "Electrical properties of oxide heteroepitaxial *p-n* junctions: La_{1-x}Sr_xFeO₃ /SrTi_{0.99}Nb_{0.01}O₃", Appl. Phys. Lett., **90**, 112104 (2007).
- H. Sato, Y. Ishii, E. Fujimoto, and H. Akoh, "La_{0.6}Sr_{0.4}MnO₃ ramp-edge junctions using (LaAlO₃)_{0.3}-(SrAl_{0.5}Ta_{0.5}O₃)_{0.7} barrier", J. Magn. Magne. Mater., **310**, e678 (2007).
- Sawa, H. Sato, H. Akoh, M. Kawasaki, and Y. Tokura, "Optical probe of electrostatic-doping in an *n*-type Mott insulator", M. Nakamura, Phys. Rev. B,75., 155103 (2007).
- T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, "Electrical properties and colossal electroresistance of heteroepitaxial SrRuO₃ /SrTi_{1-x}Nb_xO₃ (0.0002≤x≤0.02) Schottky junctions", Phys. Rev. B,75., 165101 (2007).
- Y. Ishii, H. Yamada, H. Sato, and H. Akoh "Negative spin polarization in (La,Sr)CoO₃ Probed by a magnetic tunnel junction with (La,Sr)MnO₃", Appl. Phys. Lett., 91, 192504 (2007).
- M.Konoto, T. Yamada, K.Koike, H. Akoh, T. Arima and Y. Tokura, "Formation and control of magnetic vortex chirality in patterned micromagnet arrays", J. Appl. Phys., 103, 023904 (2008).

(2)その他の著作物 (総説、書籍など)

・ 赤穂博司、「強相関界面エンジニアリングとスピントンネル接合」、第25回表面化学セミナー「量

① 著作物詳細情報

子形状効果とナノ構造」セミナーテキスト、37、(2005).

- ・ 石井裕司、山田浩之、佐藤弘、赤穂博司、川崎雅司、十倉好紀、「Mn 酸化物でのトンネル磁 気抵抗素子」、日本応用磁気学会 第150回研究会 第22回化合物新磁性材料専門研究会 テ キスト、35、(2006)
- 赤穂博司、「強相関スピントンネル接合の界面制御」、応用物理学会薄膜・表面物理分科会第36回薄膜・表面物理基礎講座「量子構造の基礎から応用まで」(2007)

(3)学会発表(国際学会発表及び主要な国内学会発表)

- ① 招待講演 (国内会議 7件、国際会議 3件)
- K. Koike, T. Kohashi, M. Konoto, H. Matsuyama, N. Kida, T. Yamada, T. Kimura, and Y. Tokura, "Recent progress in spin-polarized scan-ning electron microscopy", The International Conference on Magnetism, Kyoto, 2006.8.22
- 石井裕司、山田浩之、佐藤弘、赤穂博司、川崎雅司、十倉好紀、「Mn 酸化物でのトンネル磁気 抵抗素子」、日本応用磁気学会第150回研究会第22回化合物新磁性材料専門研究会、東 京、2006.10.18
- H. Yamada, "Fabrication and functionality of complex oxide superlattices", 2007 APS March Meeting, U.S.A., 2007.3.8
- H. Akoh, "Interface Engineering and Perovskite Spin Tunnel Junctions", CERC International Symposium, 2007.5.23
- ・ 赤穂博司、「強相関界面エンジニアリングによるスピントンネル機能の巨大化」、平成19年度ナノ デバイス領域シンポジウム、つくば、2007.7.9
- ・ 甲野藤真、「スピン偏極 SEM」、日本応用磁気学会第 155 回研究会、東京、2007.7.20
- ・ 赤穂博司、「強相関スピントンネル接合の界面制御」、応用物理学会薄膜・表面物理分科会 第 36回薄膜・表面物理基礎講座「量子構造の基礎から応用まで」、東京、2007.11.9
- 赤穂博司、「Perovskite spin tunnel junctions」、JST Nano-Workshop on Physics of Spin Currents、東京、2008.1.10
- 赤穂博司、「界面エンジニアリングによる強相関デバイス」、ナノテクノロジー分野別バーチャルラボ成果報告会、横浜、2008.1.11
- ・ 中村優男、澤彰仁、赤穂博司、川崎雅司、十倉好紀、「電場変調分光法による酸化物ヘテロ界 面電子状態の観測」、東工大特定研究会、東京、2008.1.29

② 口頭発表 (国内会議 52 件、国際会議 19 件)

- 石井裕司、澤彰仁、佐藤弘、藤本英司、山田寿一、川崎雅司、赤穂博司、十倉好紀、 "(La,Sr)MnO₃ spin tunnel junctions with LaAlO₃ barriers"、平成 15 年度東北大学金属材料研究 所ワークショップ「Nanoscience/Nanotechnology」、仙台、2004.3.4
- 小田川明弘、佐藤弘、井上公、澤彰仁、石井祐司、菅野勉、四橋聡史、足立秀明、于秀珍、金子良夫、赤穂博司、川崎雅司、十倉好紀、「電極/Pr_{0.7}Ca_{0.3}MnO₃ 薄膜/電極構造におけるヒステリシス伝導特性」、日本物理学会第59回年次大会、福岡、2004.3.27
- 石井裕司、澤彰仁、佐藤弘、藤本英司、山田寿一、川崎雅司、赤穂博司、十倉好紀、「LaAlO₃ バリアを用いた(La,Sr)MnO₃ スピントンネル接合」、日本物理学会第 59 回年次大会、福岡、 2004.3.28
- 藤本英司、石井裕司、山田寿一、佐藤弘、瀬川繁昌、菊地克弥、仲川博、青柳昌宏、赤穂博司、 「感光性ポリイミドの酸化物素子絶縁膜への適用」、2004年春季第51回応用物理学関係連合講 演会、東京、2004.3.28
- 石井裕司、佐藤弘、澤彰仁、藤本英司、山田寿一、川崎雅司、赤穂博司、十倉好紀、「段差基 板を用いた表面析出物のない(La,Sr)MnO₃ 薄膜の作製」、2004 年春季第 51 回応用物理学関 係連合講演会、東京、2004.3.28
- ・ 藤井健志、澤彰仁、小田川明弘、川崎雅司、赤穂博司、十倉好紀、「ペロブスカイト型 Mn 酸化 物の電圧パルス印加による抵抗スイッチング効果」、2004 年春季第 51 回応用物理学関係連合

講演会、東京、2004.3.29

- H. Akoh, "Device and technology for transition metal perovskites", 産総研ワークショップ「量子 機能性酸化物の新展開」、筑波、2004.5.25
- H. Sato, Y. Ishii, A. Sawa, T. Yamada, H. Akoh, M. Kawasaki, and Y. Tokura, "Fabrication of precipitate-free (La,Sr)MnO₃ films using substrates with artificial steps", 産総研ワークショップ 「量子機能性酸化物の新展開」、筑波、2004.5.25
- E. Fujimoto, Y. Ishii, T. Yamada, H. Sato, and H. Akoh, "Application of photosensitive polyimide to insulating layers of oxide devices", 産総研ワークショップ「量子機能性酸化物の新展開」、筑 波、2004.5.25
- A. Odagawa, H. Sato, I. H. Inoue, A. Sawa, Y. Ishii, T. Kanno, S. Yotsuhashi, H. Adachi, X. Yu, Y. Kaneko, H. Akoh, M. Kawasaki, and Y. Tokura, "Hysteretic conduction through Pr_{0.7}Ca_{0.3}MnO₃ thin films at room temperature", 産総研ワークショップ「量子機能性酸化物の新展開」、筑波、2004.5.25
- H. Yamada, Y. Ogawa, N. Kida, M. Kawasaki, and Y. Tokura, "Interfacae magnetism of perovskite manganites", 産総研ワークショップ「量子機能性酸化物の新展開」、筑波、2004.5.25
- Y. Ishii, A. Sawa, H. Sato, E. Fujimoto, T. Yamada, M. Kawasaki, H. Akoh, and Y. Tokura, "(La,Sr)MnO₃ spin tunnel junctions with atomically engineered interfaces", 産総研ワークショッ プ「量子機能性酸化物の新展開」、筑波、2004.5.25
- H. Yamada, Y. Ogawa, M. Kawasaki, and Y. Tokura, "Interface magnetism of perovskite manganites as investigated by magnetization-induced second harmonic generation", Telluride workshop on Colossal Magnetoresistive Manganites and Related Transition Metal Oxides, Telluride, CO., U.S.A, 2004.6.30
- ・ 澤彰仁、藤井健志、川崎雅司、十倉好紀、「金属/ペロブスカイト酸化物界面における電場誘起 抵抗スイッチング」、2004 年秋季第65 回応用物理学会学術講演会、仙台、2004.9.1
- ・ 藤井健志、澤彰仁、小田川明弘、川崎雅司、赤穂博司、十倉好紀、「遷移金属酸化物界面の CER(Colossal Electroresistance)効果」、2004 年秋季第 65 回応用物理学会学術講演会、仙台、 2004.9.1
- ・ 藤本英司、石井裕司、山田寿一、佐藤弘、瀬川繁昌、菊地克弥、仲川博、青柳昌宏、赤穂博司、 「感光性ポリイミド層間絶縁膜を用いた酸化物スピントンネル接合の試作」、2004 年秋季第 65 回 応用物理学会学術講演会、仙台、2004.9.2
- 石井裕司、山田浩之、佐藤弘、澤彰仁、藤本英司、山田寿一、川崎雅司、赤穂博司、十倉好紀、 「(La,Sr)MnO₃スピントンネル接合における界面強磁性の最適化」、2004 年秋季第 65 回応用物 理学会学術講演会、仙台、2004.9.2
- ・ 山田浩之、貴田徳明、山田高広、川崎雅司、十倉好紀、「ルテニウムドープLa_{1-x}Sr_xMnO₃薄膜の 作製とスピントンネル接合への応用」、2004 年秋季第 65 回応用物理学会学術講演会、仙台、 2004.9.2
- ・ 石井裕司、山田浩之、澤彰仁、佐藤弘、山田寿一、川崎雅司、赤穂博司、十倉好紀、「界面電 荷変調層(La,Sr)MnO₃/LaMnO₃を強磁性電極としたスピントンネル接合」、日本物理学会 2004 年秋季大会、青森、2004.9.13
- T. Fujii, A. Sawa, M. Kawasaki, and Y. Tokura, "Pulsed-voltage induced resistance switching at SrRuO₃/Nb-doped SrTiO₃ interface", 11th International Workshop on Oxide Electronics, 箱根, 2004.10.3
- Y.Ishii, H.Yamada, H.Sato, A.Sawa, T.Yamada, M.Kawasaki, H.Akoh, and Y.Tokura, "(La,Sr)MnO₃ spin tunnel junctions with engineered interface", 11th International Workshop on Oxide Electronics, 箱根, 2004.10.4
- A. Odagawa, T. Kanno, H. Adachi, H. Sato, I.H. Inoue, H. Akoh, M. Kawasaki, and Y. Tokura "Temperature dependence of colossal electro-resistance of a Pr_{0.7}Ca_{0.3}MnO₃ thin film", 11th International Workshop on Oxide Electronics, 箱根, 2004.10.3
- ・ 赤穂博司、「強相関界面エンジニアリングとスピントンネル接合」、第 25 回表面科学セミナー「量

子形状効果とナノ構造」、東京、2004.10.7

- 石井裕司、山田浩之、佐藤弘、澤彰仁、藤本英司、山田寿一、赤穂博司、川崎雅司、十倉好紀、 「強相関界面エンジニアリングによるペロブスカイト酸化物スピントンネル接合の作製」、平成 16 年度東北大学金属材料研究所ワークショップ「強相関酸化物の機能開発とコンビナトリアル手法 の応用」、仙台、2005.1.14
- ・ 赤穂博司、「強相関酸化物での界面エンジニアリングとスピントンネル接合」、鹿児島大学大学 院理工学研究科特別講演、2005.1.28
- H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, H. Akoh, M. Kawasaki, and Y. Tokura, "Engineered Interface of Correlated Electron Magnetic Oxides", 第3回ナノテク総合シンポジウム,東京, 2005.2.21
- ・ 藤井健志、澤彰仁、川崎雅司、赤穂博司、十倉好紀、「界面制御したペロブスカイト酸化物ヘテ ロ接合の電界誘起抵抗スイッチング特性」、2005 年春季応用物理学関係連合講演会、埼玉、 2005.3.30
- 石井裕司、山田浩之、佐藤弘、澤彰仁、藤本英司、山田寿一、川崎雅司、赤穂博司、十倉好紀、 「Ruドープによる(La,Sr)MnO₃スピントンネル接合の保磁力差の増大化」、2005 年春季応用物理 学関係連合講演会、埼玉、2005.3.31
- 澤彰仁、藤井健志、川崎雅司、十倉好紀、「Pr_{0.7}Ca_{0.3}MnO₃/Nb-doped SrTiO₃ エピタキシャル p-n 接合」、2005 年春季応用物理学関係連合講演会、埼玉、2005.3.31
- ・ 赤穂博司、「Mn 系強相関系材料薄膜、デバイス技術」、第3回酸化物系デバイス技術実用化促 進委員会、東京、2005.5.23
- M. Nakamura, Y. Ogimoto, H. Tamaru, M. Izumi, and K. Miyano, "Anisotropic strain effect in Nd_{0.5}Sr_{0.5}MnO₃ thin films", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- T.Fujii,A.Sawa,M. Kawasaki, H. Akoh, Y. Kawazoe, and Y. Tokura, "Colossal electro-resistance properties in heteroepitaxial perovskite oxide junctions", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- Y. Ishii, H. Yamada, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, "La_{1-x} Sr_x Mn O₃ magnetic tunnel junctions with enhanced coercivity contrast" 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- H.Sato,Y.Ishii,E.Fujimoto,andH.Akoh, "Fabrication of La_{0.6}Sr_{0.4}MnO₃/La_{0.3}Sr_{0.7}Al_{0.65}Ta_{0.35}O₃/ La_{0.6}Sr_{0.4}MnO₃ Ramp Edge Junctions", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- E. Fujimoto, Y. Ishii, T. Yamada, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, "(La,Sr)MnO₃ spin tunnel junction with extremely large TMR", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- H. Akoh, "Colossal tunnel magneto-resistance of perovskite spin tunnel junctions", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- ・ 佐藤弘、石井裕司、藤本英司、赤穂博司、「(La, Sr)MnO₃ ランプエッジ型スピントンネル接合の 作製」、2005 年秋季第 66 回応用物理学会学術講演会、徳島、2005.9.9
- 藤本英司、石井裕司、山田寿一、佐藤弘、瀬川繁昌、菊地克弥、仲川博、青柳昌宏、川崎雅司、 赤穂博司、十倉好紀、「巨大な TMR を持つ(La,Sr)MnO3 酸化物スピントンネル接合」、2005 年 秋季第 66 回応用物理学会学術講演会、徳島、2005.9.9
- ・ 澤彰仁、藤井健志、川崎雅司、十倉好紀、「金属/ペロブスカイト型銅酸化物界面の電界誘起抵 抗スイッチング」、2005 年秋季第 66 回応用物理学会学術講演会、徳島、2005.9.10
- ・ 藤井健志、澤彰仁、松野丈夫、川崎雅司、赤穂博司、十倉好紀、「Nb:STO ヘテロ接合における CER 効果のエピタキシャル電極依存性」、2005 年秋季第 66 回応用物理学会学術講演会、徳島、 2005.9.10
- ・ 山田浩之、トーマスロッタモサー、有馬孝尚、川崎雅司、十倉好紀、「LaMnO₃/SrMnO₃ 超格子

の磁性」、日本物理学会2005年秋季大会、京都、2005.9.20

- ・ 藤野路子、來田歩、田畑雅敏、松山秀生、小池和幸、「走査型トンネル電子分光による Cu(001) 上の Co クラスターの表面準位」、日本物理学会 2005 年秋季大会、京都、2005.9.20
- ・ 來田歩、藤野路子、田畑雅敏、松山秀生、小池和幸、「STS による Cu(001)上 Co 超薄膜の表面 準位と磁性」、第29回日本応用磁気学会学術講演会、長野、2005.9.21
- 田畑雅敏、來田歩、何金萍、松山秀生、小池和幸、「La_{2-2x}Sr_{1+2x}Mn₂O₇のSTM/STS観察」、日本 物理学会 2005 年秋季大会、京都、2005.9.22
- H. Yamada, T. Lottermoser, T. Arima, M. Kawasaki, and Y. Tokura, "Phase control of LaMnO₃/SrMnO₃ Interface", The 12th International Workshop on Oxide Electronics, Cape Cod, 2005.10.4
- H. Sato, Y. Ishii, E. Fujimoto, and H. Akoh, "Fabrication of La_{0.6}Sr_{0.4}MnO₃/ La_{0.3}Sr_{0.7}Al_{0.65}Ta_{0.35}O₃/ La_{0.6}Sr_{0.4}MnO₃ spin tunnel junctions using ramp geometry", The 12th International Workshop on Oxide Electronics, Cape Cod, 2005.10.4
- A. Sawa, T. Fujii, M. Kawasaki, H. Akoh, and Y. Tokura "Colossal electro-resistance memory of perovskite-oxides", 第4回ナノテクノロジー総合シンポジウム(JAPAN NANO 2006)講演, 東京, 2006.2.20
- ・ 中村優男、澤彰仁、沖本洋一、佐藤弘、荻本泰史、赤穂博司、川崎雅司、十倉好紀、 「(La,Sr)MnO₃/Nb:SrTiO₃ 接合における電場変調分光」、2006 年春季第 53 回応用物理学関係 連合講演会、東京、2006.3.22
- ・ 藤井健志、澤彰仁、山田浩之、松野丈夫、川崎雅司、赤穂博司、十倉好紀、「Nbドープ SrTiO₃ ショットキー接合の静電容量-電圧特性」2006 年春季第 53 回応用物理学関係連合講演会、東 京、2006.3.22
- ・ 石井裕司、山田浩之、佐藤弘、川崎雅司、赤穂博司、十倉好紀、「(La,Sr)MnO₃ スピントンネル 接合における電流パルス注入」、2006 年春季 第 53 回応用物理学関係連合講演会、東京、 2006.3.26
- H. Yamada, Y. Ishii, H. Akoh, M. Kawasaki, and Y. Tokura, "Ru-doped (La,Sr)MnO₃ thin films for application to spintronics devices", The International Symposium on Anomalous Quantum Materials 2006 and The 5th Asia-Pacific Workshop, 沖縄, 2006.6.24
- M. Nakamura, A. Sawa, Y. Okimoto, H. Sato, Y. Ogimoto, H. Okamoto, H. Akoh, M. Kawasaki, and Y. Tokura, "Electro-absorption spectra in oxides interfaces", The International Symposium on Anomalous Quantum Materials 2006 and The 5th Asia-Pacific Workshop, 沖縄, 2006.6.24
- ・ 佐藤弘、石井裕司、山田浩之、藤本英司、川崎雅司、赤穂博司、「界面エンジニアリングによる La_{1-x}SrxMnO₃ スピントンネル接合の高機能化」、ナノテクノロジー分野別バーチャルラボ成果報 告会、東京、2006.7.15
- ・ 中村優男、澤彰仁、川崎雅司、十倉好紀、"Observation of electric field effect carrier doping into correlated electron oxides using modulation spectroscopy"、基盤研究 A「単結晶薄膜化によ り物性を制御した強相関系遷移金属酸化物の電子構造の研究」研究会、筑波、2006.8.3
- K. Koike, T. Kohashi, M. Konoto, H. Matsuyama, N. Kida, T. Yamada, T. Kimura, and Y. Tokura, "Recent progress in spin-polarized scan-ning electron microscopy", The International Conference on Magnetism, Kyoto, 2006.8.22
- H. Sato, Y. Ishii, E. Fujimoto, and H. Akoh, "La_{0.6}Sr_{0.4}MnO₃ ramp edge junctions using (LaAlO₃)_{0.3}-(SrAl_{0.5}Ta_{0.5}O₃)_{0.7} barrier", The International Conference on Magnetism, Kyoto, 2006.8.24
- 山本晃生、澤彰仁、赤穂博司、川崎雅司、十倉好紀、「Ti/Pr_{1-x}Ca_xMnO₃界面におけるCERのB サイト置換効果」、2006 年秋季 第 67 回応用物理学会学術講演会、滋賀、2006.8.31
- ・ 中村優男、澤彰仁、川崎雅司、十倉好紀、「遷移金属酸化物接合界面における電界効果キャリ アドーピングの分光学的観測」、日本物理学会 2006 年秋季大会、千葉、2006.9.23
- ・ 石井裕司、山田浩之、佐藤弘、川崎雅司、赤穂博司、十倉好紀、 「(La,Sr)MnO₃/LaAlO₃/(La,Sr)CoO₃接合における負のトンネル磁気抵抗とスピン偏極トンネル分

光」、日本物理学会 2006 年秋季大会、千葉、2006.9.23

- 甲野藤真、富岡泰秀、小池和幸、赤穂博司、十倉好紀、「スピン偏極 SEM による La_{0.7}Sr_{0.3}MnO₃
 単結晶の実空間スピン計測」、日本物理学会 2006 年秋季大会、千葉、2006.9.24
- M. Nakamura, A. Sawa, M. Kawasaki, and Y. Tokura, "Modulation spectroscopy of electric-field induced carrier doping in correlated electron oxides", 13th International Workshop on Oxide Electronics, Italy, 2006.10.10
- M. Nakamura, A. Sawa, M. Kawasaki, and Y. Tokura, "Optical probe of electro-static carrier doping into Mott insulators", Augsburg University seminor, Germany, 2006.10.13
- 石井裕司、山田浩之、佐藤弘、赤穂博司、川崎雅司、十倉好紀、「Mn 酸化物でのトンネル磁気 抵抗素子」、日本応用磁気学会第150回研究会第22回化合物新磁性材料専門研究会、東 京、2006.10.18
- H. Yamada, "Fabrication and functionality of complex oxide superlattices", 2007 APS March Meeting, U.S.A., 2007.3.8
- 田畑雅敏、村木ゆず、藤野路子、松山秀生、小池和幸、來田歩、何金萍、「La_{2-2x}Sr_{1+2x}Mn₂O₇ 極低温劈開面の STM/STS 観察」、日本物理学会 2007 年春季大会、鹿児島、2007.3.18
- 村木ゆず、田畑雅敏、藤野路子、松山秀生、小池和幸、來田歩、何金萍、「La_{2-2x}Sr_{1+2x}Mn₂O₇ 極低温劈開面上の周期構造の STM 観察」、日本物理学会 2007 年春季大会、鹿児島、 2007.3.18
- 山本晃生、澤彰仁、赤穂博司、川崎雅司、十倉好紀、「酸化物エピタキシャル p-n 接合 La_{1-x}Sr_xFeO₃/SrTi_{0.99}Nb_{0.01}O₃の電気特性」、2007 年春季 第 54 回応用物理学関係連合講演会、 相模原、2007.3.29
- ・ 佐藤弘、石井裕司、山田浩之、藤本英司、山田寿一、川崎雅司、赤穂博司「界面エンジニアリン グ手法を用いた La1-xSrxMnO₃ スピントンネル接合の高機能化」平成 19 年度ナノデバイス領域 シンポジウム、 つくば、2007.7.10
- ・ 澤彰仁、山本晃生、中村優男、藤井健志、川崎雅司、赤穂博司「強相関界面バンド構造の評価と界面電子相の外場制御」、平成19年度ナノデバイス領域シンポジウム、 つくば、2007.7.10
- 村木ゆず、佐々木広器、松山秀生、小池和幸、何金萍、「層状強相関 Mn 酸化物 La2-2xSr1+2xMn2O7の表面安定性」 平成 19 年度ナノデバイス領域シンポジウム、 つくば、 2007.7.10
- ・ 佐々木広器、松山秀生、小池和幸、何金萍、「強相関層状 Mn 酸化物 LA₂₋₂SR₁₊₂×Mn0₇の電界 イオン顕微法観察」第68回応用物理学会学術講演会、北海道工業大学2007.9.5
- ・ 中村優男、澤彰仁、山田浩之、赤穂博司、川崎雅司、十倉好紀、「ショットキー接合を用いた絶 縁体の仕事関数の評価」、2007 年第 68 回応用物理学会学術講演会、北海道工業大学、 2007.9.7

③ ポスター発表(国内会議 16件、国際会議 15件)

- M. Nakamura, Y. Ogimoto, H. Tamaru, M. Izumi, and K. Miyano[,] "Anisotropic strain effect in Nd_{0.5}Sr_{0.5}MnO₃ thin films", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- T. Fujii, A. Sawa, M. Kawasaki, H. Akoh, Y. Kawazoe, and Y. Tokura, "Colossal electro-resistance properties in heteroepitaxial perovskite oxide junctions", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- Y. Ishii, H. Yamada, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, "La_{1-x}Sr_xMn O₃ magnetic tunnel junctions with enhanced coercivity contrast" 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- H.Sato,Y.Ishii,E.Fujimoto,andH.Akoh, "FabricationofLa_{0.6}Sr_{0.4}MnO₃/La_{0.3}Sr_{0.7}Al_{0.65}Ta_{0.35}O₃/La_{0.6} Sr_{0.4}MnO₃Ramp Edge Junctions", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9

- E. Fujimoto, Y. Ishii, T. Yamada, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, "(La,Sr)MnO₃ spin tunnel junction with extremely large TMR", 2005 CERC/ERATO-SSS International Workshop on "Phase Control of Correlated Electron Systems", Hawaii, 2005.6.9
- A. Sawa, T. Fujii, M. Kawasaki, H. Akoh, and Y. Tokura "Colossal electro-resistance memory of perovskite-oxides", 第4回ナノテクノロジー総合シンポジウム(JAPAN NANO 2006)講演, 東京, 2006.2.20
- ・ 中村優男、澤彰仁、沖本洋一、佐藤弘、荻本泰史、赤穂博司、川崎雅司、十倉好紀、「(La,Sr)MnO₃/Nb:SrTiO₃ 接合における電場変調分光」、2006 年春季第 53 回応用物理学関係 連合講演会、東京、2006.3.22
- ・ 藤井健志、澤彰仁、山田浩之、松野丈夫、川崎雅司、赤穂博司、十倉好紀、「Nbドープ SrTiO₃ ショットキー接合の静電容量-電圧特性」2006 年春季第 53 回応用物理学関係連合講演会、東 京、2006.3.22
- H. Yamada, Y. Ishii, H. Akoh, M. Kawasaki, and Y. Tokura, "Ru-doped (La,Sr)MnO₃ thin films for application to spintronics devices", The International Symposium on Anomalous Quantum Materials 2006 and The 5th Asia-Pacific Workshop, 沖縄, 2006.6.24
- M. Nakamura, A. Sawa, Y. Okimoto, H. Sato, Y. Ogimoto, H. Okamoto, H. Akoh, M. Kawasaki, and Y. Tokura, "Electro-absorption spectra in oxides interfaces", The International Symposium on Anomalous Quantum Materials 2006 and The 5th Asia-Pacific Workshop, 沖縄, 2006.6.24
- ・ 佐藤弘、石井裕司、山田浩之、藤本英司、川崎雅司、赤穂博司、「界面エンジニアリングによる La_{1-x}SrxMnO₃ スピントンネル接合の高機能化」、ナノテクノロジー分野別バーチャルラボ成果報 告会、東京、2006.7.15
- H. Sato, Y. Ishii, E. Fujimoto, and H. Akoh, "La_{0.6}Sr_{0.4}MnO₃ ramp edge junctions using (LaAlO₃)_{0.3}-(SrAl_{0.5}Ta_{0.5}O₃)_{0.7} barrier", The International Conference on Magnetism, Kyoto, 2006.8.24
- 甲野藤真、富岡泰秀、小池和幸、赤穂博司、十倉好紀、「スピン偏極 SEM による La_{0.7}Sr_{0.3}MnO₃
 単結晶の実空間スピン計測」、日本物理学会 2006 年秋季大会、千葉、2006.9.24
- 田畑雅敏、村木ゆず、藤野路子、松山秀生、小池和幸、來田歩、何金萍、「La_{2-2x}Sr_{1+2x}Mn₂O₇極低温劈開面の STM/STS 観察」、日本物理学会 2007 年春季大会、鹿児島、2007.3.18
- ・ 村木ゆず、田畑雅敏、藤野路子、松山秀生、小池和幸、來田歩、何金萍、「La_{2-2x}Sr_{1+2x}Mn₂O₇極 低温劈開面上の周期構造の STM 観察」、日本物理学会 2007 年春季大会、鹿児島、2007.3.18
- Y. Konoto, K. Fujiwara, M. J. Rozenberg, Y. Nakamura and H. Takagi, "Current induced anodic oxidation in a Nb/NbO_x channel designed for resistive memory device", CERC International Symposium, 2007.5.23
- M. Konoto, T. Yamada, T. Arima, K. Koike, H. Akoh, and Y. Tokura"Formation and Control of Magnetic Vortex Chirality in Patterned Nanomagnet Arrays", CERC International Symposium, 2007.5.23
- H. Sato, E. Fujimoto, A. Kitoh, Y. Ishii, and H. Akoh, "Polyimide Insulating Films for (La,Sr)MnO₃ TMR Junctions", CERC International Symposium 2007.5.23
- A. Yamamoto, A. Sawa, H. Akoh, M. Kawasaki, and Y. Tokura, "Interfacial electronic properties of oxide heteroepitaxial *p-n* junctions: La_{1-x}Sr_xFeO₃/ SrTi_{0.99}Nb_{0.01}O₃", CERC International Symposium, 2007.5.23
- Y. Ishii, H. Yamada, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura, "Negative tunnel magnetoresistance inspin-polarized (La, Sr)MnO₃ / LaAlO₃ / (La, Sr)CoO₃ junctions"CERC International Symposium, 2007.5.23
- M. Nakamura, A. Sawa, H. Sato, H. Akoh, M. Kawasaki, and Y. Tokura, "Electromodulation Spectroscopy of Mott Insulators/Nb:SrTiO₃ Heterojunctions "CERC International Symposium, 2007.5.23
- A.Sawa, T. Fujii, A. Yamamoto, H. Akoh, M. Kawasaki, and Y. Tokura, "Reversible Resistance Switching Effect at Perovskite-oxide Heteroepitaxial Interfaces" CERC International

Symposium, 2007.5.23

- 村木ゆず、佐々木広器、松山秀生、小池和幸、何金萍、「層状強相関 Mn 酸化物 La_{2-2x}Sr_{1+2x}Mn₂O₇の表面安定性」 平成 19 年度ナノデバイス領域シンポジウム、つくば、 2007.7.10
- 山田浩之、貴田徳明、トーマスロッタモサー、佐藤弘、有馬孝尚、川崎雅司、十倉好紀、 「Probing Interface Magnetism in Perovskite Oxide Superlattices」平成 19 年度ナノデバイス領域 シンポジウム、つくば、2007.7.10
- 甲野藤真、藤本英司、山田浩之、小池和幸、赤穂博司、「スピン偏極走査電子顕微鏡による La_{0.7}Sr_{0.3}MnO₃ 電極薄膜の観察」平成 19 年度ナノデバイス領域シンポジウム、つくば、 2007.7.10
- 石井裕司、山田浩之、佐藤弘、川崎雅司、十倉好紀、赤穂博司、「Negative spin polarization of (La,Sr)CoO₃ analyzed by (La,Sr)MnO₃-based magnetic tunnel junctions」平成 19 年度ナノデバイ ス領域シンポジウム、つくば、2007.7.10
- M. Nakamura, A. Sawa, H. Sato, H. Akoh, M. Kawasaki, and Y. Tokura 「Optical probe of electrostatic doping in Mott insulators」平成 19 年度ナノデバイス領域シンポジウム、つくば、 2007.7.10
- A.Yamamoto, A. Sawa, H.Akoh, M.Kawasaki, and Y. Tokura 「Electronic properties of heteroepitaxial p-n junctions at La_{1-x}Sr_xFeO₃/SrTi_{0.99}Nb_{0.01}O₃interface」平成 19 年度ナノデバイ ス領域シンポジウム、つくば、2007.7.10
- 甲野藤真、藤本英司、中村優男、小池和幸、赤穂博司、十倉好紀、「スピン偏極 SEM による La_{0.7}Sr_{0.3}MnO₃ 薄膜の高分解能実空間スピン計測」日本物理学会第62回年次大会、北海道、 2007.9.21
- 佐藤弘、「(La,Sr)MnO3 電極を用いたスピン偏極トンネル分光接合の作製」ナノテクノロジー分野 別バーチャルラボ成果報告会、横浜、2008.1.11
- 澤彰仁、「強相関界面バンド構造の評価と界面電子相の外場制御」ナノテクノロジー分野別バー チャルラボ成果報告会、横浜、2008.1.11

(4)特許出願

①国内出願(3件)
 発明者:+倉好紀、川崎雅司、山田浩之、金子良夫
 発明の名称:トンネルジャンクション素子(特願 2004-62073)
 出願人:産業技術総合研究所、科学技術振興機構
 出願日:2004年3月5日

発 明 者:澤彰仁、藤井健志、川崎雅司、十倉好紀 発明の名称:不揮発性メモリ(特願 2005-084913) 出 願 人:産業技術総合研究所

出 願 日:2005年3月23日

発明者:澤彰仁、藤井健志、川崎雅司、十倉好紀 発明の名称:不揮発性メモリ(特願 2005-084926)

- 出 願 人:產業技術総合研究所
- 出 願 日:2005年3月23日

②海外出願(0件)

(5)受賞等

①受賞

・ 小池和幸、第5回山崎貞一賞、「スピン偏極走査電子顕微鏡の開発と応用」、2005.9.22

② 新聞報道

- ・ 朝日新聞(3面) 2004 年 7 月 30 日掲載、「ハードディスク大容量化へ一歩」(産総研)
- 日本経済新聞(17面) 2004 年 7 月 30 日掲載、「磁性体材料を効率開発」(産総研)
- 日経産業新聞(9面) 2004年7月30日掲載、「磁化の強さ評価 メモリー大容量化に道」 (産総研)
- 日刊工業新聞(33 面) 2004 年 7 月 30 日掲載、「強磁性体/絶縁体界面 磁性を光で検出」(産総研)
- 茨城新聞(23 面) 2004 年 7 月 30 日掲載、「ハードディスク性能向上新材料」(産総研)
- 河北新報(27面) 2004 年 7 月 30 日掲載、「HD 高性能化に新素材」(産総研)
- ・ 電波新聞(2面) 2004年8月2日掲載、「ハードディスク高性能化へ」(産総研)
- 科学新聞(4面) 2004年8月20日掲載、「世界初、界面磁性を直接検出」(産総研)
- ・ 半導体産業新聞(1606 号 2 頁) 2004 年 9 月 4 日掲載、「強相関酸化物金属強磁性体の 界面磁性の直接検出と増強に成功 スピントンネル接合の高性能化を拓く」(産総研)

③その他 なし

年月日	名称	場所	参加人数	概要
2003.11.19	第1回チーム ミーティング	産業技術総合研究所 第4事業所 第3会議室	13人	プロジェクトに ついての説明
2003.11.25	第2回チーム ミーティング	産業技術総合研究所 第4事業所 第3会議室	12人	研究概要説明 研究報告 所内見学
$2004.7.29 \ \sim 30$	第3回チーム ミーティング	北海道大学 ファカルティハウ ス エンレイソウ2F会議室	16人	研究進捗と今 後の研究計画 所内見学
2004.12.22	第4回チーム ミーティング	産業技術総合研究所 第4事業所 第3会議室第	12人	研究進捗と今 後の研究計画
2005.9.12	第5回チーム ミーティング	産業技術総合研究所 第4事業所 第3会議室	18人	研究進捗と今 後の研究計画
2006.9.28	市野瀬英喜先生 講演会	北海道大学 ファカルティハウ スエンレイソウ 2F 会議室	17 人	「電子顕微鏡 で見た半導体 界面の原子構 造と電子構造」
2006.9.28	第6回チーム ミーティング	北海道大学 ファカルティハウ スエンレイソウ 2F 会議室	17 人	研究進捗と今 後の研究計画
2007.7.9 ~10	ナノテクデバイス 研究会	産業技術総合研究所 共用講堂	13 人	成果報告会

7	研究期間中の主た活動(ワークショ	ョップ・シン	ノポジウム	套)
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-r /

8 研究成果の展開

(1)他の研究事業への展開

電界誘起抵抗変化(CER)効果の成果を基に、NEDOの産業技術研究助成プロジェクト「遷移 金属酸化物接合の電界誘起抵抗変化効果の機構解明と不揮発メモリ素子の開発」(平成 17 年 度~平成 20 年度)に展開している。

また、この CER 効果に関する成果の一部を発展させ、JST-CREST の研究領域「次世代エレクトロニクスデバイスの創出に資する革新材料・プロセス研究」において平成 19 年度新規テーマ 「機能性酸化物を用いた界面相転移スイッチングデバイスの開発」として採択された。

## (2)実用化に向けた展開

直接の技術移転ではないが、CER 効果は新しい不揮発性メモリとして期待されている抵抗変 化型メモリ ReRAM(Resistance RAM)への研究展開が大いに期待できる。

9 他チーム、他領域との活動とその効果

(1)領域内の活動とその効果

領域内で開催された若手研究者の研究交流会(「梶村塾」と呼ばれている)において、異なる 研究分野の研究者との意見交換から、若手の研究者は学術の観点から刺激を受け、有意義で あった。

(2)領域横断的活動とその効果

事例はなし。

# 10 研究成果の今後の貢献について

(1)科学技術の進歩が期待される成果

本研究成果のうち、界面エンジニアリング手法の確立とこの手法を用いた強相関スピントンネル機能の高性能化は、戦略目標のひとつである「半導体、酸化物や磁性体中の電子の持つもう 1つの自由度であるスピンを電子デバイスにおける新しい自由度として積極的に活用した、新し いナノ構造を利用したスピンエレクトロニクス材料の探索・創製」に合致する成果である。すなわ ち、ここで確立した界面エンジニアリング手法は、スピントンネル機能および CER 機能の開発に 対して極めて有効な研究アプローチであることを科学技術的に実証したが、この手法はこれだけ にとどまらず、新しい強相関酸化物デバイス機能の開拓や新規な界面デバイス機能の探索にも 大いに貢献できる手法と期待される。

(2)社会・経済の発展が期待される成果

本研究成果のうち、CER 効果の機構解明に関する成果は、戦略目標のひとつである「固体量 子ビット素子、超伝導系量子磁束素子、相関電子素子、相関光子素子、スピン制御そし、ナノチ ューブ・ナノワイヤ素子等、新原理素子の探索及び技術的な壁の打破」に一部合致する成果で ある。すなわち、ここで得られた CER 効果の機構解明の成果により、不揮発性メモリとして期待さ れている抵抗変化型メモリ ReRAM の構造設計や特性制御に大いに貢献し、ReRAM の開発が 飛躍的に進展すると期待されている。

11 結び

本プロジェクトでは、強相関遷移金属酸化物を用いた新規デバイス機能の実証を目的に、界 面電子状態の直接観察、界面電子状態のデザイン、界面デザインに基づく界面制御および検 証という「界面エンジニアリング」手法の確立を目指してきた。さらにはデバイス作製技術を駆使 してデバイスを作製し、デバイス機能を実証するところまでを研究ターゲットとした。強相関界面 デバイス機能として、当初は、界面磁性に関わる強相関スピントンネル機能を取り上げたが、研 究の進捗とともに界面伝導に関わる強相関 CER 機能を新たに研究課題として設定した。以下に その成果をまとめるとともに、今後の展開を述べる。

・界面エンジニアリング手法の確立

非線形光学 MSHG による界面磁性の直接観察法により、非破壊で界面磁性を観測することに 成功するとともに、電荷移動による界面キャリア増加を補償する傾斜組成界面デザインを行い、 その界面強磁性の増強を MSHG により実証した。このように、界面磁性を直接検出し、原子レベ ルでデザインした界面構造を構築して強相関界面物性を最適化する手法(界面エンジニアリン グ手法)は全く前例がなく、本プロジェクトで初めて確立した。

・界面磁性デバイス機能(スピントンネル機能)

界面エンジニアリング手法に基づく2種類の界面磁性デザイン(トンネル層材料の最適化、界 面磁性の強靱化)を行い、トンネル接合界面磁性の最適化を MSHG により実証した。さらに、強 相関デバイス作製技術を開発するとともに、この技術を駆使してスピントンネル接合を作製し、ス ピントンネル接合特性の向上に成功した。また、層間絶縁膜作製技術などのデバイスプロセス技術の開発を進め、巨大な TMR を持つ接合の作製を行った。さらに、Ru ドーピングによる保持力可変型接合の開発に成功した。

・界面伝導デバイス機能(巨大電界誘起抵抗変化機能)

CER効果の動作機構解明を目的に、仕事関数の異なる様々な金属電極と遷移金属酸化物からなる接合、および種々な強相関酸化物とNbドープSrTiO₃からなるヘテロエピタキシャル接合を界面エンジニアリング手法に基づき、材料横断的に作製し、その電流-電圧特性、静電容量-電圧特性などから材料やキャリア濃度による界面バンド構造変化を調べた。その結果、CER効果は、空乏層領域に不純物準位などのトラップサイトが存在し、トラップサイトのチャージング効果により、共鳴トンネルのようなリーク電流パスが開閉する、という動作モデルを提案した。

以上のように、このプロジェクトで確立した「強相関界面エンジニアリング」手法は、強相関酸化物を用いた界面デバイス機能、特にTMR機能やCER機能の開発に対して、極めて有効な研究アプローチであることを実証できたことは自負している。界面エンジニアリング手法は、今後、強相関酸化物界面で生じる様々な特異でかつ未知な物性の探索にも、大いに活用できる手法として期待できる。

本プロジェクトでは、数100%のTMR比をもつ強相関スピントンネル接合を再現性よく作製する ことに成功した。この素子技術を用いて、今後は、様々な強相関酸化物の未知なスピン状態を 解明できる、スピントンネルスペクトロスコピー技術への展開が期待される。

### プロジェクト運営について

本プロジェクトは、2つの研究グループで構成した研究体制で遂行し、各グループ内では月1 回以上の頻度で研究進捗と議論を行ってきた。また、チーム全体の研究遂行は、チーム会議を 年1回以上開催し、詳細な研究進捗報告と議論を行うとともに、研究計画についても綿密に検討 を行った。また、研究費を適正に執行するため、帳簿の管理を厳格に行うとともに、物品管理簿 の整備を行った。ポスドクとして雇用した若手研究者育成のため、きめ細かな研究進捗状況の把 握と議論を行った。成果を挙げたポスドク研究者のうち、一人は公的研究機関の研究者として、 二人は民間企業の研究開発者として現在活躍している。

# 戦略的創造研究推進事業に対する意見、要望

まず、本研究プロジェクトを遂行する上で叱咤激励ならびにサポートをいただきました研究総括 をはじめ、研究領域事務所の技術参事、事務参事ならびに JST に感謝いたします。特に、本研 究テーマにおいては、研究遂行中に新しい研究課題が現れたため、研究項目の追加という研究 計画の変更をお願いしたが、研究総括のかなり自由な裁量のもと、この研究計画変更を柔軟か つ迅速に対応いただきました。CREST 事業のこのような柔軟性を今後も是非維持していただき たいと願う次第です。



北大とチームミーティング (北海道)



界面伝導デバイス作製装置∶産総研



デバイスプロセス評価用電子顕微鏡:産総研



スピン SEM 用 PLD 装置∶産総研



金属電極膜作製装置:産総研



超高真空原子間力顕微鏡∶北大