「先端光源を駆使した光科学・光技術の融合展開」 平成21年度採択研究代表者 H23 年度 実績報告

竹内 繁樹

北海道大学 電子科学研究所·教授

「モノサイクル量子もつれ光の実現と量子非線形光学の創成」

§1. 研究実施体制

(1)「竹内」グループ

①研究代表者:竹内繁樹(北海道大学 電子科学研究所、教授)②研究項目

- 1. モノサイクルもつれ光源の開発
- 2. 量子非線形光学の研究
- 3. 量子メトロロジーの研究

(1)「栗村」グループ

①主たる共同研究者:栗村直(独立行政法人物質・材料研究機構、光材料センター光 周波数変換グループ、主幹研究員)

②研究項目

 モノサイクルもつれ光源の開発 (QPM デバイス設計試作)

(1)「ホフマン」グループ

①主たる共同研究者:Holger F. Hofmann (広島大学 大学院先端物質科学研究科、准教授) ②研究項目

- 1. モノサイクルもつれ光源の開発
- 2. 量子非線形光学の研究
- 3. 量子メトロロジーの研究

§2. 研究実施内容

(文中の引用番号等は(3-1)に対応する)

本研究は、「量子もつれ光」と「モノサイクル光」の概念を融合し、極限的な時間相関を有するも つれ光という全く新しい光源を創造、さらに、その光源を用いてこれまで実現不可能な「光」と物質 の相互作用をナノフォトニクス技術により実現、新しい超高速現象の観測技術を切り開くとともに、 量子メトロロジーへの応用により光計測分野へもイノベーションをもたらすものである。北海道大学 (竹内グループ)が評価・計測・検証を、物質・材料研究機構(栗村グループ)がもつれ光を発生す る新規非線形デバイス開発を、および広島大学(ホフマングループ)が理論解析を担当し、(1)モ ノサイクルもつれ光源の開発、(2)モノサイクル量子もつれ光を用いた非線形光学、(3)モノサイク ル量子もつれ光を用いた量子メトロロジーの3つのテーマについて研究を進める。中間目標に掲 げる数サイクル(20~30フェムト秒程度)の極短時間相関のもつれ光子対光源の実現を目標に、 プロジェクト前半は3項目のうち特に(1) モノサイクルもつれ光源の開発に関し重点的に進め、当 初計画していた(1-A)ナノ加工電極による擬似位相整合(QPM)デバイスの開発 に加えて、従来 技術の延長である(1-B) 変調光リソグラフィーを用いた QPM デバイスの開発、さらに(1-C)バルク 非線形光学結晶を利用した発生方法の3通りについて、並列的に研究を進めている。

平成23年度は、項目(1-A)に関し、栗村グループは、電子ビーム露光によるAlナノ電極を用い て電界印加分極反転を行い、幅 400nmの細線電極を用いて、周期 8μmの周期分極反転構造 の実現に成功した。また、項目(1-B)に関し、南京大学との共同研究により超伝導光子検出システ ムの構築に成功、非同軸条件での超広帯域パラメトリック蛍光対発生(790nm-1610nm)を、広帯 域可変バンドパスフィルターを用いた分光測定により確認した。また項目(1-C)に関しては、バルク 結晶を用いる広帯域化について引き続きより詳細な検討をおこなった。また、項目(2)に関しては、バルク 結晶を用いる広帯域化について引き続きより詳細な検討をおこなった。また、項目(2)に関しては、 和周波発生時の光子検出用に前述の超伝導光子検出システムの立ち上げに成功した。また、直 径 300nmのナノ光ファイバを実現、その表面に付着させた半導体量子ドットからの発光が、ナノ 光ファイバに高効率で結合することを実証した。また、理論的には、時間遅延をもった極短参照パ ルスによる2光子干渉を用いて光子の時間相関及び時間コヒーレンスの詳細な情報を得られる方 法を発案した。さらに項目(3)に関しても、名古屋大学西澤准教授との共同研究により、量子光コヒ ーレンストモグラフィ(量子 OCT)の実験系を立ち上げ、バルク非線形結晶で発生させた広帯域も つれ合い光子対を利用し、2μm 程度の分解能に相当する量子 OCT 信号を得ることに成功、ま た群速度分散に対する耐性も確認した。以上のように、研究は順調に進展している。

これらの成果をもとに、来年度は項目(1)に関し、ナノ電極を用いたチャープ構造の設計および 試作、超広帯域パラメトリック蛍光対の周波数相関測定、光子対のチャープ補正光学系の構築、 項目(2)に関しては光子対和周波発生による時間相関測定、項目(3)に関しては量子 OCT の高分 解能化などを行う予定である。

以下、各グループごとに、それぞれの項目における研究進展の詳細を報告する。

竹内グループでは、項目(1)のモ ノサイクルもつれ光源の開発に関し て、平成 22 年度に、栗村グループ が既存技術を用いて作成した作製 した、10%チャープ QPM デバイス 評価実験を行ない、その結果、約 790nm~1640nm(帯域幅 850nm) の超広帯域パラメトリック蛍光発生に 成功した。しかし、あまりにも帯域が 広いため、この測定は CCD カメラお よび InGaAs フォトダイオードアレイ という、2種類の異なる積算型光検

図1. 非同軸超広帯域パラメトリック蛍光対の、超伝導光子 検出システムによる分光測定結果

出器を、波長ごとに使い分けておこなったものであった。

今後、光子対の周波数相関測定や、2光子量子相関測定などの評価を進めるには、積算型検 出器ではなく、個々の光子の検出をパルス信号として出力する光子検出器(フォトンカウンティン グ)を用いた評価が必須である。しかし、市販の光子検出器で、これだけの広帯域をカバーできる 光子検出器は存在しないという問題があった。

平成 23 年度、我々は、元々、項目(2)の和周波発生信号用に、南京大学の協力の元で開発を 進めてきた、超伝導光子検出器の活用を試みた。一般に用いられている半導体アバランシェフォ トダイオードを用いた光子検出器は、バンドギャップ以下のエネルギーの光子は通常検出できな いため、その帯域が限られている。一方で超伝導光子検出器は、超伝導ギャップのエネルギーが 可視光や近赤外光と比べて極めて小さいため、原理的には広い帯域を有する。この超伝導光子 検出器システムと、分光器の一種である広帯域可変バンドパスフィルターを組み合わせた系により、 超伝導光子検出システムの検出効率の波長およびバイアス電流依存性を詳細に明らかにした。 その結果、長波長域で指数関数的に検出効率が減少するものの、500nm-1650nm という広い波 長帯域にわたって、光子検出が可能であることが分かった。また、最大の効率が得られるバイアス 電流においても、そのダークカウントは毎秒2カウントと、極めて低ノイズであることも分かった。

この超伝導光子検出器システムと、分光器の一種である広帯域可変バンドパスフィルターを組み合わせた系により測定した、非同軸条件で発生させた超広帯域パラメトリック蛍光対のスペクトルを図1に示す。790nm-1610nm という広帯域にわたり発生していることが確認できた。また、理論計算から、光子対の一方に適切に群速度補正を施すことができれば、この蛍光対は最短5fsの時間相関を持ちうることが分かった。(Photonics West 招待講演、竹内 G 国際6他、投稿予定)

項目(2)のモノサイクル量子もつれ光を用いた非線形光学に関しては、光子対を非線形光学結 晶中に入射し、和周波発生を用いて、ポンプ光と同じ波長(532nm)を持った光子を発生させる必 要がある。この過程は、通常の光では殆ど生じないが、モノサイクル量子もつれ光を用いた場合には、毎秒数個から数百個程度の和周波光子発生が予測されている。この観測のためには、 532nmに高い感度をもち、かつ、ダークカウントができるだけ少ない光子検出器が必要となる。

このような検出器として、平成22年度より南京大学の呉教授、陳教授のご支援を得、共同研究 として超伝導光子検出システムの構築を行ってきた。平成23年度は、システムの構築に成功、超 伝導光子検出システムの検出効率の波長およびバイアス電流依存性を詳細な評価を行った。そ の結果、532nmにおいて、検出効率 30%を維持しながら、毎秒 0.01 個という極めて少ないダーク カウントを得られることを確認した(Photonics West 招待講演、竹内 G 国際7他、論文投稿中)。

また、モノサイクルもつれ光を用いた2光子吸収実 験に関連し、平成22年度までに、ナノ光ファイバの 実現について研究を進め、たとえば微小球共振器の 極低温下での結合実験について報告してきた。平成 23年度は、直径 300nm のナノ光ファイバを実現¹¹、 その表面に付着させた半導体量子ドットからの発光 が、ナノ光ファイバに高効率で結合することを実証し た⁴⁾(図2)。この実験では、半導体量子ドット (CdSe/ZnS)からの単一光子蛍光を 7.4%という高効 率で直径約 300nm の極細の単一モードナノ光ファ

図2.ナノ光ファイバ表面の半導体量子ドットからの単一光子蛍光の結合実験系

イバに結合できた。これは SIL(Solid Immersion Lens)と顕微光学系の組み合わせによる結合 効率を超える値である。この系を、もつれ光子対による2光子吸収実験への応用することで、2つ の光子を、進行方向(時間方向)に加えて、その上下左右方向にも閉じ込めた状態で、単一発光 体等と相互作用させることが可能になると期待される。(Nano Lett. 2011, Opt. Exp. 2011 他、 論文 1,4,5)

項目(3)のモノサイクル量子もつれ光を用いた 量子メトロロジーに関しては、平成22年度より、 OCT 開発に実績のある、名古屋大学西澤准教 授との協力を得て研究をすすめている。平成22 年度は、古典 OCT と量子 OCT の性能を、同一 装置で比較出来るように工夫した光学系の設計、 試作を行い、古典光を用いた、20μm 程度の低 コヒーレント干渉の観測に成功していた。平成2 3度は、広帯域なパラメトリック蛍光対をバルク非 線形結晶で発生させ、もつれ合い光子対として 利用することで、2μm 程度の分解能に相当す

図3. 広帯域光源によるOCTと量子OCTの比較実証 実験結果。分解能の比較実験(a),(b)および群速度分 散への耐性実験結果(c).(d)。

る量子 OCT 信号を得た(図 3(b))。これは同程度の帯域(約 80nm, 37THz)を持つ SLD 光源によ る古典 OCT の分解能 4.4μ m(図3(a))を上回る結果であり、量子 OCT の分解能における優位性 を実証できた。さらに、群速度分散は従来の古典 OCT において分解能を悪化させる原因として問 題となっているが、その影響を調べるためにサンプル用の経路に分散媒質(ZnSe)基板を挿入して 分解能の変化を見た。その結果、古典 OCT では分解能が 56 μ m と 10 倍以上悪化した(図3(c)) のに対し、量子 OCT では 4μ m(図3(d))とその効果が抑制されることが示され、実験的に群速度 分散への耐性を実証することに成功した。このような広帯域もつれ光源を利用した量子 OCT 実験 で、群速度分散耐性を検証したのは知る限り初めての成果である。平成24年度は、より広帯域な 光源による分解能の向上を目指していく予定である。(Photonics West 招待講演、竹内 G 国際6 他)

また、光子の2光子干渉性を利用した光量子回路に関して、巨大な単一光子非線形を持った素子を組み合わせた、光量子回路(KLM-CNOT)の実現に成功した³⁾(PNAS, 論文 3)。他に、空間モード(軌道角運動量)間のもつれ状態の精密な検証にも成功している²⁾。

栗村グループは、項目(1)のモノサイクルもつれ光源の開発に関し、超広帯域擬似位相整合デバイスの研究を担当している。平成 23 年度は、項目(1-A)に関し、電子ビーム露光による Al ナノ 電極を用いて電界印加分極反転を行い、周期分極反転構造の実現に成功した。分極反転領域 は、1)核生成、2)Z軸成長、3)X軸成長、4)安定化の段階を経て周期構造を形成する(図4)が、 この際に印加電界は非常に強いパラメータである。従来法では絶縁層をパターニングした上に全 面電極を形成する手法を用いているが、本研究では電子ビーム露光によるナノ細線化に対応す るため電気伝導率の高い Al を選定し電極を形成している。構造的および材料的な違いにより電 界印加に影響があり、次の2点が大きく異なる:すなわち A) 細線化による電極付近の電界集中度、 および B)フェルミ順位の違いによる酸化物誘電体 SLT との間に形成される空乏層、である。前 者は印加電界の絶対値に影響し、後者は印加するパルス幅に影響する。そこで今回の新規電極 に対して印加電界の最適値を模索すべく3)および4)のプロセスの電界依存性を調査した。

核生成密度を満たす電界印加条件は、震災の復帰直後に比較的早く確定できたため、デバイスとしての効率をきめる3)X軸成長、4)安定化の過程について電界印加条件を検討した。3)X軸成長過程においては最大効率を実現する分極反転比を与える電界を探索し(図5)、4)安定化過

図4 強誘電体 Mg:SLT における電界印加分極反転過程

程においては、効率の低下要因であるバックスイッチングを抑制する安定化電界を探索した(図 6)。図5では電界集中を反映して分極反転比の電界依存性は傾きが大きく、そのスロープは 4 (mm/kV)と求められた。他方、図6の安定化電界に関しては2次曲線近似において 0.38 (kV/mm)においてバックスイッチ密度が最小と求められた。

印加電界0.715kV/mmにおいて得られた周期8μmの分極反転構造を図7に示す。分極反転 比の不均一はみられるものの幅 400nm の細線電極において周期構造が観測されている。電界 印加条件の最適化により均一性の改善が見込まれている。

図 8 周期と分極反転比の関係

また本プロジェクトの主題である大きく異なる周期が混在するチャープ構造は、それぞれの周期 電極においてを3)X軸成長の度合いが異なるため、均一な分極反転比を得ることが極めて困難 である。世界的にも過去に成功例がないため、平成 23 年度はナノ電極を設計するための基礎デ ータの取得を行った。図 7 のように構造の不均一が存在するため現時点では平均の分極反転比 で表示されているが、同一電界印加条件では周期が短くなるに連れて分極反転比が増大すること がわかる。これは複数周期が混在した場合にそれぞれの効率が異なることを意味し、チャープ構 造で帯域を拡大する際の本質的な困難と言える。今回これらの基礎データが得られたことでナノ 電極を用いたチャープ構造の設計が可能になり、平成24年度はこの設計、作製に移行する。 項目(1-B)に関し、平成23年度では高密度励起の検討を行った。デバイスの周期にチャープをか けたことで、単位周波数あたりのスペクトル輝度は低下するため、チャープデバイスにおいて十分 な光子数を得るためには高い励起光パワーが必要になる。数ワットクラスの励起光では Mg:SLT の微小吸収に起因する発熱が無視できず、発生スペクトル幅に熱的なゆらぎが生じる。すなわち 熱的な光子対発生の不安定性が量子干渉の再現性を低下させることになる。栗村グループは、 高排熱モジュールを開発し(図9)第二高調波発生において励起光波長(0.53µm)を高出力で 発生させ、温度上昇を定量評価した。この結果温度上昇は3℃以内に抑えられ励起光波長への 波長変換で19W出力が得られた(図10)。すなわちこの排熱モジュールでは、励起光19Wの高 密度励起まで対応できることがわかった。なおこれ以前の単行連続発振緑色光発生の最高出力 はスタンフォード大学の18.8Wであり、世界最高レベルの出力が得られていたことがわかる。

図9 高排熱波長変換モジュール

図10 SHGによる励起光波長発生実験

ホフマングループは、昨年度に任昌亮博士研究員が着任し、体制が整っている。項目(1)に関しては、時間分解量子トモグラフィーの方法として、時間遅延をもった極短参照パルスによる2光子 干渉を用いて光子の時間相関及び時間コヒーレンスの詳細な情報を得られる方法を理論的に考 案した。これにより数サイクルもつれ光子対の時間もつれあいを極短の時間スケールで評価可能 であると考えられる。また、項目(2)に関し、昨年度までに量子的な性質を持つ光と原子系の相互 作用の解析を行なってきたが、今年度はさらに単一原子系における2光子の相互作用を記述する 新たなモデルを開発し、非共鳴光により引き起こされる原子系での2光子散乱を評価した。この結 果は原子系での数サイクルもつれ光子対とコヒーレント光の相互作用の解析に応用できると考え られる。項目(3)に関しては、昨年度までに量子メトロロジーと弱測定に関する一連の研究を行なっ てきたが、今年度において弱測定が光子の周波数と時間の情報を結合させることができ、それに よって数サイクルもつれ光子対の周波数・時間相関におけるチャープを効率的に評価できることを 理論的に示した。さらに量子もつれを用いた時刻同期プロトコルの研究も開始しており、多者間も つれ合いを利用した方法について幾つかの初期的な結果を得ており引き続き研究を行なう予定 である。

§3. 成果発表等

(3-1) 原著論文発表

● 論文詳細情報

【竹内グループ】

1. M. Fujiwara, K. Toubaru and S. Takeuchi, "Optical transmittance degradation in tapered fibers", OPTICSEXPRESS(OSA), vol.19, No.9, pp.8596-8601, 2011 (DOI: 10.1364/OE.19.008596)

2. Y. Miyamoto, D. Kawase, M. Takeda, K. Sasaki and S. Takeuchi, "Detection of superposition in the orbital angular momentum of photons without excess components and its application in the verification of non-classical correlation", Journal of Optics, vol.13, No.69, pp.064027/1-6, 2011 (DOI: 10.1088/2040-8978/13/6/064027)

3. R. Okamoto, J.L. O'Brien, H.F. Hofmann and S. Takeuchi, "Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities", Proc. Natl. Acad. Sci, vol.108, No.25, pp.10067-10071, 2011 (DOI: 10.1073/pnas.1018839108)

4. M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi and T. Kawai, "Development of microfabricated TiO₂ channel waveguides", AIP Advances, vol.1, No.3, pp.032102/1-5, 2011 (DOI: 10.1063/1.3615716)

5. M. Fujiwara, K. Toubaru, T. Noda, H.Q. Zhao and S. Takeuchi, "Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers", Nano Letters, vol.11, No.10, pp.4362-4365, 2011 (DOI: 10.1021/nl2024867)

【栗村グループ】

6. S. Kurimura, "Device and Material for High-power Wavelength Conversion", 機能材料 vol.31, No.3, pp5-10, 2011

7. 栗村直:"波長変換材料の進展" THE REVIEW OF LASER ENGINEERING (レーザー研究) vol.39, No.5, pp319-325,2011.

8. H. Iliev, I. Buchvarov, S. Kurimura, V. Petrov: "1.34-um Nd:YVO₄ laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium 劫antalite" Opt. Express vol.19, No.22, pp21754-21759, 2011.
(DOI: 10.1364/OE.19.021754)

9. H. H. Lim, T. Katagai, S. Kurimura, T. Shimizu, K. Noguchi, N. Ohmae, N. Mio, and
I. Shoji, "Thermal performance in high power SHG characterized by phase-matched calorimetry" Optics Express, Vol. 19, No.23, pp22588-22593, 2011.
(DOI: 10.1364/OE.19.022588)

【ホフマングループ】

10. C. Ren and H. F. Hofmann, "Time-resolved measurement of the quantum states of photons using two-photon interference with short-time reference pulses", Phys. Rev. A Vol. 84, 032108 (2011). (DOI: 10.1103/PhysRevA.84.032108)

11. H. F. Hofmann, "On the role of complex phases in the quantum statistics of weak measurements", New J. Phys. Vol. 13, 103009 (2011).(DOI: 10.1088/1367-2630/13/10/103009)

12. H. F. Hofmann, "Complex joint probabilities as expressions of reversible transformations in quantum mechanics", accepted for publication in New J. Phys.

(3-2) 知財出願

① 平成 23 年度特許出願件数(国内 0件)

② CREST 研究期間累積件数(国内 1件)