「物質現象の解明と応用に資する新しい計測・分析基盤技術」 平成17年度採択研究代表者

内藤 康秀

光産業創成大学院大学 光産業創成研究科·准教授

超高分解能高速イメージング質量分析技術(質量顕微鏡)の構築

§1. 研究実施の概要

本年度は、イオン光軸のアライメントを高精度に保てるように新規設計した二号機の製作、二号 機において周回後に歪みがない像の取得、ディレイライン検出器の高速データ処理系の構築お よび空間分解能を向上させるための改良、中赤外レーザー光を用いたイオン化法の開発、色素 染色した生体組織切片のイオン像の取得を行なった.

昨年度までに、マルチターン飛行時間型質量分析計(MULTUM)部を周回後に、イオン像が 歪む原因の解明を行なった.扇形電場電圧やマツダプレートに印加する電圧のバランスを大幅に 崩す必要があること、ならびにイオン軌道シミュレーションとの比較から、MULTUM 部への入射 角度のずれが主要因であることが分かった.そこで本年度は、装置全体のアラインメントを高精度 に保てるように新たに設計した2号機を製作した.光軸に大きく影響するイオン源の引き出しレンズ 系、MULTUM 部本体、拡大光学系を一枚にチタン製のベースプレートに高精度のジグを用いて くみ上げる方法を採用している.この2号機では、試料表面上で直径 160μm の視野について、 扇形電場に計算値通りの電圧を印加することで、MULTUM 部を10周回させた後に、ほぼ歪み のないイオン像を得ることに成功した.また8周回させた後のほぼ歪みのないイオン像で空間分解 能を評価し、約 2.5μmを達成した.0周回後(リニアモード)と8周回後を比較すると、空間分解能 の統計的分布は全く同じであった.

また質量分離イオン像を位置・時間感知型検出器であるディレイライン検出器で高速に取得す るために、アナログ/デジタル変換器(ADC)でデータ化し、50msの時間内に高速処理する信号 処理系を構築した.従来の time to digital converter (TDC)を用いた処理系では、時間精度は 良いもののデッドタイムの影響で、数十 ns 以内に到着したイオンの検出ができなかった. ADC の 場合は、デッドタイムはないが、データ量が膨大になりデータ処理に時間を要するという問題があ ったが、今回開発した処理系により、検出と同時に個々のイオンの到達時刻と位置座標のデータ を集録することができるようになった. さらにデータ解析用ソフトウェアを開発し, マウス操作で容易かつ迅速に質量分離イオン像を画像化できるようになった. また, 検出器の位置分解能を 60μ m から 30μ m に改善するため, アノード構造を細密化した検出器の製作と評価を進めた. 試作した検出器はパルス出力の SN 比が低いため, その対策を検討している.

また生体試料への応用を実現するため、中赤外レーザーによる高効率イオン化法の開発およ び生体試料を扱う技術の蓄積を進めており、波長 6µm 帯の吸収を用いて可溶化剤を含む膜タ ンパク質試料のイオン化に成功し、また染色した脳組織切片から光学顕微鏡像に対応する色素イ オン像を取得することに成功した.

§2. 研究実施体制

(1)内藤研究グループ

研究分担グループ長:内藤 康秀(光産業創成大学院大学、准教授)
②研究項目

- 1. ディレイライン検出器による位置・時間同時検出処理系の構築
- 2. ディレイライン検出器の高解像度化

(2) 豊田研究グループ

①研究分担グループ長:豊田 岐聡(大阪大学大学院、准教授)

②研究項目

- 1. アラインメントのずれを根本的に解決するための二号機の設計/製作
- 2. 二号機の評価と周回後に歪みのない像の取得
- 3. 小半導体構造の輸送特性への不純物などの不均一性の影響を調べる
- 4. イオン像取得のためのモデル試料となる色素ドットならびに半導体微細構造の作製

(3) 粟津研究グループ

①研究分担グループ長:栗津 邦男(大阪大学大学院、教授)

②研究項目

- 1. 多重周回飛行時間型質量分析計の収差の影響を実験的に評価する
- 2. 多重周回によって質量分離したイオン群イメージを取得する
- 3. 中赤外レーザーおよび紫外レーザーの2波長照射効果を確認する
- 4. 投影型イメージング質量分析に適したサンプル調製法の開発
- 5. マトリックスフリー高効率レーザー脱離イオン化法の確立

§3. 研究実施内容

(文中に番号がある場合は(4-1)に対応する)

3-1. 周回後のイオン像を保持するためのアラインメント精度を改善した2号機の製作と検証

ー号機の結果から、イオン源、引き出しレンズ系、MULTUM本体、拡大光学系の光軸アライメントが非常に重要であることが分かったため、装置全体のアラインメントの精度を高精度に保てるように新たに二号機を設計/製作した.加工業者とも打ち合わせを行ない、これら個々の部品を加工精度 10μ m 以下で加工し、全ての部品を剛性が高く、熱膨張係数の小さいチタン製のベースプレート上に高精度ジグを用いて配置する構造とした.組み立て精度は 50μ m 以下を目指した.また、残留ガスとイオンとの衝突による散乱を防ぐために、真空容器は脱ガスの少ないチタン製とした.その結果、真空度は焼き出しをしない状態でも 10^{6} Pa 台前半の真空度を維持できている.図1は製作した装置の写真である.

図1 装置全体の写真(左側)およびチャンバー内の MULTUM とイオン源の写真(右側)

新しく製作した二号機の性能評価を行なった.一号機では、4セットの扇形電場電極とマツダプ レートに印加する電圧を理論値から大幅に調整しなければイオン像を取得できなかったが、二号 機では理論値通りの電圧を印加するだけで像の取得が可能であった.このことから二号機では十 分な精度での機械的アライメントを達成できていると考えられる.像の取得確認後、周回させた時 の像の歪みを小さくするために、以下の改良を行った.(1)光軸から大きくはずれたイオンが周回 中に電極などで散乱され、イオン像に悪影響を及ぼすため、直線部中心にビーム幅を制限するス リットを設けた.これにより像のコントラストが良くなった.(2)サンプルプレートと引出し電極の平行 度が像の歪みに重大な影響を及ぼすと分かったので、引き出し電極にサンプルターゲットを直接 固定し平行度を保証する構造とした.これにより、像の歪みはほとんどなくなった.(3)サンプルター ゲットを固定式にしたため、サンプルの消耗により短時間の測定しか行なえなくなったため、平行 度を維持しながらサンプル位置を電動ステージで移動できる機構を追加した.これらにより10周回 後でもほぼ歪みのないイオン像を得ることができるようになった.図2は、クリスタルバイオレットの 色素ドットを試料とした場合の、光学像と0周回後(リニア)と10周回後のイオン像である.また、二 号機ではイオン源と MULTUM を近づけた設計としたため、サンプル上のより広い範囲から放出 したイオンビームを MULTUM の安定軌道領域に入射できるようになり、イオン像の与える視野が 従来の 100 μ m から 160 μ m に拡大した. さらに歪みが小さいイオン像を取得するための条件出 しを行い、周期的パターンのイオン像で空間分解能を評価した. 図3は、2000 メッシュ(ピッチ 12.7 μ m、線幅 5 μ m)のファイングリッドを被せたクリスタルバイオレットを試料とした場合の、0周 回後および8周回後のイオン像と、視野内の全ての点について評価して得た空間分解能の分布 である. 8周回後でも0周回後と同じ空間分解能の分布が得られており、約 2.5 μ m の空間分解能 を達成した. 現在、周回後にイオン像を拡大して十分な空間分解能を得るための評価実験を行な っている.

図2 ドットパターンの光学顕微鏡像(左側)およびリニアと10周回後のイオン像(右側)。ドットサイズ は直径 20 μ m で 80 μ m ピッチで配置。

図3 0周回後(リニア)と8周回後のメッシュパターンのイオン像(左側)および視野内の全ての点に ついて評価して得た空間分解能の分布(右側)。

3-2. 位置・時間感知型イオン検出器で連続高速データ集録するための信号処理系の開発

位置・時間感知型のディレイライン検出器から出力される電気信号は、従来 time to digital converter (TDC)を用いて処理されていた. TDC は時間精度は良いもののデッドタイムの影響で、数十 ns 以内に到着したイオンの検出ができなかった. 粒子散乱のような稀にしか検出器に荷電

粒子が到達しない場合には問題ないが、MALDI イオン源を有する飛行時間型質量分析計の検 出器として用いる場合には、数十 ns 以内に多数のイオンが到達するため、取りこぼしが生じる. ア ナログ/デジタル変換器(ADC)によってデータ集録する場合は、デッドタイムが生じないが、信 号波形データをそのまま記録するとデータサイズが大きいため保存するデータ量が膨大になり、 測定実行時および測定終了後におけるデータ処理時間が長くなる. そこで信号波形をデータ化と 同時に解析処理してイオンの到達時刻と位置座標のデータシートにして保存し、かつ解析処理を 高速化した信号処理系を LabVIEW を用いて開発した(図4). これにより 10Hz のレーザーで生 成した色素イオンについて、測定実行時に個々のイオンの到達時刻と位置座標のデータを集録し、 測定後の画像化処理時間(2次元ヒストグラム作成)と合わせても約 14 分の測定時間でイオン像を 得ることに成功した. マウスを用いてマススペクトル上の任意のピークを選択すると、そのイオンの データのみ抽出して質量分離イオン像を高速に画像化するソフトウェアを MATLAB を用いて開 発した. これにより容易かつ迅速にデータ解析できるようになった(図5).

また,装置全体の空間分解能の向上には,ディレイライン検出器の空間分解能の向上が必須 である.装置全体で 1 μ m の空間分解能を達成するためには,現状の質量分析計部の最大の像 拡大率が 50 倍であるため,ディレイライン検出器の空間分解能は 50 μ m 以下が要求される.従 来のディレイライン検出器の空間分解能は 100 μ m 程度であるため,さらに空間分解能を上げる 必要がある.そこで,空間分解能とアノードのライン間隔の関係を定式化し,ライン間隔の細密化 によって空間分解能を改善できると予測した.ライン間隔を細密化できるリングラフィ加工によるア ノード作製法を考案し,ライン間隔を 800 μ m にしたアノードを試作し,ディレイライン検出器を組 み立て,実際にイオン像が得られることを確認した.次に,ディレイライン検出器の空間分解能を 30 μ m に向上させるため,ライン間隔を 200 μ m にした検出器を試作し評価したが,位置座標の 片方に相当する第2層アノードのパルス出力の SN 比が低く,データの取りこぼしが生じた.その 原因を第1層アノードの開口度の低さと推測し,対策を検討している.

Read and second a descent of second second second second second second	5.88
Sector 4400 Arrow 10000 Arrow 10000 Arrow 10000 Arrow 10000 Communication - 1000 Grade (00000) - 1000 Grade (00000)	
Terrer d'Annalden 2	Number of Augustion
	Insur one 1 Desired the American State of the American State of the American Difference of the American State of the American State of the American State of the American State of the American State of the American State of the American State of the American State of the American State
Committee of the second s	
The second secon	¥

	A(Y)	B(Y)	O(Y)	D(Y)	E(Y)	F(X)	G(Y)
ロングネーム	TOF	DLA X1	DLA X2	DLA YI	DLA Y2	x	Y
単位							
コメント							
1157	6.88745E6	41.41629	58.631	50.77728	41.93616	-17.21471	8.84112
1158	6.88789E6	62.09374	60.57289	67.18891	47,43305	1.52085	19.75587
1159	6.89165E6	58.91123	54,54853	59.19332	47.11203	4.3627	12.08129
1160	6.89536E6	54.41493	54,0062	60,24926	39.78645	0.40873	20.46281
1161	6.89652E6	56.32938	60.77988	61.05197	49.2103	-4.4505	11.84167
1162	6.89744E6	58.09932	53.02664	59.49256	43.77037	5.07268	15 72219
1163	6.89783E6	52,71797	53.39815	57.13539	40.43211	-0.68018	16.70328
1164	6.89902E6	62.12201	50.46921	61.84848	42.47239	11.6528	19.37809
1165	6.89916E6	57.31433	48.78869	56.93928	41.43004	8.52564	15.50924
1166	6.90146E6	63.14787	58 19278	65.04956	47.22309	4,95509	17.82647
1167	6.90154E6	57.19554	54,14303	63.94765	39.36132	3.05251	24 59633
1168	6.90181E6	12.95332	22.35551	16.90964	10.53414	-9.40219	6.3755
1169	6.90269E6	53.26331	57.94573	62,74402	41.45315	-4.68242	21.29087
1170	6.90794E6	58.39646	53.05823	56.93044	46.55032	5.33824	10.38013
1171	6.90949E6	60.20288	49.13521	57,47827	44.50945	11.06767	12,96882
1172	6.91056E6	62.91058	37.82347	9.94375	43.64718	25.08711	-33,70343

図4. ディレイライン検出器の信号処理系の操作画面(左側)および集録データシート(右側)

3-3. 生体試料用の高効率イオン化法の開発と生体試料を測定対象にする技術の蓄積

生体試料の質量顕微鏡測定において生命機能上重要な膜タンパク質も測定対象にできるように

することを目標に、波長 6µm 帯の中赤外レーザー(difference-frequency generation laser; DFG レーザー)を用いた MALDI 法の開発を行った。膜タンパク質は不溶性なので分析に可溶 化剤を用いるが、通常の紫外レーザーを用いた MALDI 法では可溶化剤がイオン化を阻害する ため、測定が困難である。そこで、界面活性剤(ドデシルマルトシド)を用いて可溶化した膜タンパ ク質(ロドプシン)を紫外マトリックス(αシアノ4ヒドロキシ桂皮酸)溶液に混合した試料で、波長 6µ m 帯の吸収を用いて MALDI 法でのイオン化を試みた。その結果、波長 5.8µm の中赤外レー ザーのみの照射で、ロドプシンのイオン化と検出に成功した。中赤外自由電子レーザーを用いた 先行研究では中赤外レーザーのみではタンパク質のイオンは検出されていなかったのに対して、 この違いは自由電子レーザーとDFGレーザーのパルス構造の違いによる推測される。すなわち、 自由電子レーザーでは 44.8ns 間隔で並んだパルス幅 5ps のミクロパルスが全体としてパルス幅

図5. テスト試料に用いた色素微小ドット文字パターン(左上), 全イオン像(右上), マススペクトル (左下)、マススペクトル上で選択されたピーク(赤色の範囲)の質量分離イオン像(右下). リニアモ ードで測定.

15µsのマクロパルスを形成しており、ミクロパルスあたりのエネルギーは3-9µJである。これに対して、DFG レーザーの出力はパルス幅 5ns の単一パルスであり、1パルスあたりのエネルギーが500µJと高いため、中赤外レーザーのみでも膜タンパク質をイオン化することができたと考えられる。また、図6に示した通り、紫外・赤外2波長のレーザーを同時に照射するとロドプシンイオンの信号強度がさらに強くなることが確認された。ただし、これが2波長のレーザーを照射したことによる効果であるのか、単なる照射エネルギーの増加によるものであるかについては更なる検討が必要である。

次に、組織切片など具体的な生体試料についての投影型イメージング質量分析による測定技

術を蓄積するため、色素染色した組織切片を試料にして MULTUM 一号機で色素イオンの像を 取得した。主に細胞の核を染めるメチレンブルー(MB)と細胞質などを染めるクリスタルバイオレッ ト(CV)による2重染色法を用いてマウスの脳切片を染色し、一号機の直線飛行部分で MB と CV 両イオンの像を撮像した。この際、投影型イメージング質量分析で組織切片のイオン像を得るため には試料表面に約 8nm の厚さで金を蒸着することが必要であることを明らかにした。これは、金の 蒸着によって試料表面への電荷の蓄積を避けることができているためであると考えられる。また、 サンプル位置を一定の間隔で移動しながら取得した複数のイオン像を結合するソフトウェアを開発 し、色素染色したマウスの脳切片における海馬全体(3mm×1.5mm)のイオン像を得ることに成 功した。

図7. 色素(クリスタルバイオレットとメチレンブルー)で染色したマウスの脳切片における海馬部分の光学顕微鏡像(左)、および同切片から得られた色素イオン像(右)

§4. 成果発表等(4-1) 原著論文発表

● 論文詳細情報

1. Michisato Toyoda, Development of multi-turn time-of-flight mass spectrometers and their applications, Eur. J. Mass Spectrom. (in press), doi:10.1255/ejms.1076.

(4-2) 知財出願

① 平成 21 年度特許出願件数(国内 1件)

② CREST 研究期間累積件数(国内 2件)