「資源循環・エネルギーミニマム型システム技術」 平成12年度採択研究代表者

堤 敦司

(東京大学大学院工学系研究科 助教授)

「コプロダクションによるCO。フリーなエネルギー・物質生産システムの構築」

1. 研究実施の概要

エネルギーと物質の生産システムを根底から見直し、エネルギーと物質を併産(コプロ ダクション)するシステムを創生することによって大幅な省エネルギーとエネルギー利用 の高効率化を達成させるとともに、環境性に優れたエネルギー・物質生産体系を構築する ことを目的として研究を行った。

(これまでの研究の概要、成果、今後の見通し)

(1) バイオマスからの水素とカーボンのコプロダクション

1)バイオマスのガス化反応機構

連続十字流移動層型微分反応器を用いてバイオマスを水蒸気ガス化し、揮発、生成した ガス、タール、チャーを一定の反応時間で分取し分析した。それにより、以下の知見を得 た。

・673 Kにおいては、セルロースの水蒸気ガス化と熱分解の反応に大きな違いは見られない。

・673 K におけるバイオマスの水蒸気ガス化において、ガスの発生傾向は各成分における 発生傾向に沿った傾向を示す。

・タールの組成は反応時間によって変化し、初期はヘミセルロースとセルロース由来の水 溶性成分とリグニン由来の非水溶性成分がともに含まれ、非水溶性成分はリグニン単独で ガス化を行った場合よりも多く揮発すること、水溶性成分もセルロース単独の場合に比べ て早く放出される。

・反応開始後30 s付近のタールはセルロース由来の親水性成分が主成分である。

以上のことから、バイオマスのガス化の際、初期に揮発するヘミセルロースが他の成分 の揮発に影響を与えていることが示唆された。

2) バイオマス由来タール分解触媒の開発

様々なCo担持量および焼成温度で調製したCo/Mg0触媒およびNi/Mg0触媒を用い、ナフタ レンの水蒸気改質反応実験を行った。873 Kで焼成した12wt% Co/Mg0触媒が、最適反応条 件下で、ガスへの転化率23 %と高活性を示し、主生成物がH2, C02となった。触媒のキャ ラクタリゼーション結果から、金属Co表面積が活性の向上に寄与していることを示唆した。 ナフタレンの水蒸気改質反応実験を行った結果、12wt% Co/MgO触媒(873 Kで焼成)が転化率23%,3時間安定と最も高活性を示した。

3)流動層反応器によるバイオマスからのガスとチャーのコプロダクション

出発物質であるバイオマスあるいは未利用低質化石燃料を燃焼によって熱エネルギーに 転換して利用するのではなく,確保可能な既存の余剰熱エネルギーを用いて可燃ガスや化 学物質へ転換し,その際のエネルギーと物質の流れを,エネルギー高効率利用あるいはエ クセルギーロス最小化の観点から,再編成・再構築するタスクである.

既往の炭素系資源のガス化プロセスでは燃料の一部を燃焼(部分酸化)させ,高温場を 作り出しながら,燃料(とりわけチャー)のガス化率を向上させている.ガス化率向上の 観点からは部分酸化操作は必要不可欠であるが,エクセルギー的な観点から見れば,燃料 が本来持っている化学ポテンシャルが燃焼によって失われているという事実が浮かび上が ってくる.

我々が現在直面しているエネルギーおよび地球環境問題の解決のためには、エネルギー 生産とその利用における個別の技術的問題を解決すると同時に、グローバルスケールでの 物質循環を考慮したCO₂フリー型のエネルギー生産・利用システムを構築することが重要 である.すなわち、炭化水素系資源を高温・完全ガス化をすることはエクセルギーロスミ ニマム、持続可能なエネルギー生産あるいはCO₂排出量低減の観点から必ずしも好ましい 方法ではなく、例えば、反応性に富む部分(揮発分)を積極的にクリーンな燃料ガスに転 換し、反応性の乏しい残りの部分を炭化物として固定化する方がはるかに合理的である. 本タスクでは、ガス化に関する視点を変え、完全ガス化は敢えて行わず、部分的なガス化 により未利用炭化水素系資源から水素と炭化物を併産するプロセスを開発することを目標 としている.本年度は、活性アルミナ粒子のような多孔質粒子を流動媒体に用い、生成し たタールを反応場で捕獲することを目的に実験を行った.また、粒子種類の影響も調べた. (2)物質生産におけるエネルギーコプロダクション

コプロダクションを可能にする基本的な化学反応の装置と触媒開発を目的とする.低温 (500℃)メタンスチームリフォーミング(吸熱)触媒の開発,低温(300℃)アンモニア 分解(吸熱)触媒の開発,中温(700℃)メタン酸化カップリング(吸熱)触媒とプロセ スの開発,耐高温触媒材料の開発,排熱回収貯蔵運搬材料の開発,新規アンモニア合成触 媒の開発,アンモニア分離材料の開発,フロン分解反応材料の開発などを行なった.

本年度は特に耐高温触媒材料の開発,メタンスチームリフォーミング(吸熱)触媒の開 発等を行った.高温で高表面積を保つ触媒材料,特にアルミナの開発は重要である.同グ ループが既にマイクロエマルジョン法にて高表面積耐熱アルミナ触媒を開発しているが, Baなど添加物を必要としていた.添加物のない純粋な高表面積耐熱アルミナを開発が期待 されている.また,メタンのリフォーミング反応に関する研究の多くは常圧下で行われて いるが,GTL (Gas to Liquid)プロセスにおける合成ガス製造の視点から工業的には2.0 MPa以上で行われる必要がある.この反応用の触媒開発上の問題点は触媒上に起こる炭素 析出である.ペロブスカイトの構造中に主金属(Co・Ni)を分散させた触媒は常圧反応では優れた炭素析出抑制に優れていることが分かっている.

逆ミセル法で得た有機化合物を含むアルミナ前駆体を酸素や水のない状態下,不活性気体中で加熱し,1050-1350℃で炭化することによりアルミナ前躯体を(高い温度まで安定な)炭素でおおい,バリウムを全く添加しなくとも,アルミナをガンマ型のままの微結晶(4-6nm)に留めることができた.(アルミナナノ粒子をいわば"凍結"することができた.)更にこのものを低温(500-800℃)で酸素又は水蒸気処理することにより炭素を一部又は完全に除去した耐熱性高表面積(300m2/g)ガンマアルミナを製造できた.製法の制御により炭素とアルミナの両方の性質を表面に残した材料として利用できる.

またメタンのCo/SrTi03触媒を用いて高圧リフォーミング反応(2.0 MPa)の検討を行なった. 触媒層を分け高圧反応を行なった結果, 触媒層の前段ではほとんど炭素析出が起こっておらず,後段でより炭素析出が起こっていることが明らかになった. 高圧反応における炭素析出の原因が反応生成物であるCOの不均化によるものであることが分かった.

今後の見通しとしては、耐熱高表面積アルミナについては、高度な技術として特許申請 も行っているが、製法が複雑で実用化のためには更に検討、発展させる必要がある.メタ ンの高圧リフォーミング反応用触媒には、生成物であるCO由来の炭素析出の抑制が必要で あるが、主金属の性質を変化させるなど触媒特性の更なる改良が求められる

(3) コプロダクションの方法論・プロセス設計手法・基礎理論の確立

コプロダクションシステムの要素技術である基本的な化学反応や熱変換システムの現象 論に基づくモデル化により化成品生産反応プロセスと分離プロセスとの統合可能性を評価 する手法を検討し、コプロダクションシステムによるエネルギー・物質併産のシナジー効 果を明らかにするとともに、省エネルギー性、運転操作性、設備費の観点からの評価手法 を導出した。その有効性をいくつかの典型的な化学プロセスシステムのパターンについて 検討しコプロダクションによるシナジー効果を明らかにした。

(4) コプロダクションのグランドデザインの確立

コプロダクションプロセスの設計を目指し、ナフサ熱分解プロセスを実例として検討を 進めているが、これまでの高温作動型ヒートポンプの導入によるヒートトランスフォーム の検討のみではなく、高温発熱系プロセスであるSOFCを導入したフローシートについて検 討し、導入した場合に熱バランスについて定量的に評価し、過不足の程度を明らかにした。 また、これらの熱のやり取りを如何に高効率で行えるかの実例として熱交換型触媒反応器 の検討も進めた。具体的な反応を例に反応器形状と熱交換、エクセルギー損失との関連を 評価した。

また、エクセルギー再生技術を用いて、燃料電池、ガスタービン、ガス化炉の最適イン テグレーションを検討した。 2.研究実施内容

(研究目的) エネルギー・地球環境問題を解決し、人類が持続的発展を遂げるためには、 従来の大量生産・大量消費型から、エネルギーと資源の消費をミニマムとする資源循環型 へと変えていく必要がある。そこで本研究では、エネルギーと物質の生産システムを根底 から見直し、エネルギーと物質を併産(コプロダクション)するシステムを創生すること によって大幅な省エネルギーとエネルギー利用の高効率化を達成させるとともに、環境性 に優れたエネルギー・物質生産体系を構築することを目的とする。

(方法) エネルギー再生技術の確立と体系化を行う。物質生産におけるエネルギーコプ ロダクションを可能にする基本的な化学反応の装置と触媒の開発を行う。また、カーボン をコプロダクションすることにより、CO₂、NOx、SOxおよび重金属を排出しないエネルギ ーシステムの構築を目指す。さらに、コプロダクションの方法論・プロセス設計手法・基 礎理論の確立を図るとともに、コプロダクションシステムグランドデザインを行う。

(1) バイオマスからの水素とカーボンのコプロダクション

1)バイオマス水蒸気改質ガス化の反応機構

(研究目的)

バイオマスガス化の際、タールは流路内に凝縮し配管を閉塞させるなどの問題を引き起 こす。本研究では、開発した連続十字流移動層型微分反応器を用いて、バイオマスの主成 分であるセルロースやリグニン、そして実際のバイオマスをガス化し、その生成物を分析 し、タールの発生機構を検討した。

(実験方法)

ガスの流れが独立した6個のコンパートメントによって構成された連続十字流移動層型 微分反応器を用いて、試料をベルトコンベアによって加熱した反応器内に連続的に供給し、 各コンパートメントで各反応時間に対応する生成ガスと生成タールを分離回収するととも に、反応後のチャーを回収し性状を分析した。

試料にはセルロース、リグニン、ヘミセルロースとしてキシラン及びバイオマスとして チリ産のユーカリを用い、673Kにおいて水蒸気ガス化をおこなった。発生ガスはMicro-GC により組成を分析した。タールは冷却トラップによって円筒ろ紙に捕集するとともに、経 路に付着したタールを水およびアセトンで洗浄し、溶媒を蒸発させて乾燥重量を測定した 後、FT-IRを用いてIRスペクトルを調べ、またHPLCを用いて糖分析及び分子量分布測定を 行った。チャーは反応器のベルト出口付近から固体サンプラーによって捕集し、IRスペク トルの測定及びCHNS元素分析装置によって元素分析を行った。

(結果と考察)

Fig. 1にチリ産ユーカリをガス化したときのガス及びタール発生速度を示す。反応初期 及び30 s付近でガスの発生にピークがみられる。この試料に含まれる各成分の割合をセル ロース50%、ヘミセルロース23%、リグニン27%と見積もった場合に三成分合計したガス及 びタールの発生速度の傾向をFig. 2に示す。ガスの発生に関する傾向に関してはFig. 1と ほぼ一致するが、タールの発生に関しては傾向が異なり、実バイオマスは反応初期に多く

Fig. 1 Gas and tar evolution rates Fig. 2 Gas a biomass stead each components

Fig. 2 Gas and tar evolution rates of biomass steam gasification

のタールが発生していることがわかる。生成したタールを水溶性タール(WS)とアセトン可 溶性タール(AS)に分画し、IRスペクトル、分子量分布を分析した結果、リグニンやキシラ ンのタール発生量は非常に少なく、大部分はセルロースに由来するものであること、実際 のバイオマスでは、反応初期に生成したタール中には、リグニン由来のアセトン可溶性タ ール(AS)も多く含まれていることがわかった。

Fig. 3にバイオマス水蒸気ガス化反応機構についてまとめた。バイオマスのガス化反応 においては初期にヘミセルロースとセルロース由来の水溶性タールとリグニン由来の非水

Fig. 3 Gas and tar evolution model

溶性タールが生成し、反応後期にはタールの主成分はセルロース由来の水溶性タールとな る。セルロースは単独でガス化した場合反応開始後20 s でタールの発生ピークを迎え、 30 s 付近でガスの発生ピークを迎える。バイオマスのガス化の際には水溶性タールの発 生ピークが反応初期に現れることから、バイオマス中のセルロース成分は単独でガス化さ れるよりも揮発分としての放出が早まっているといえる。リグニンは反応初期に著しくガ スを放出する。タールの発生はごくわずかで、大部分はチャーに転化する。バイオマスの ガス化の際には反応初期に非水溶性タールの発生がリグニン単独のガス化から予想される よりもはるかに多くみられ、それらは芳香族環を持ちリグニン由来の成分であったことか ら、バイオマス中のリグニン成分は単独でガスかされるときよりも揮発分としてのタール 放出量が増大していると言える。ヘミセルロースの代表物質であるキシランは反応初期と 反応開始後30 s にガス発生のピークを持ち、タールの放出は反応初期に起こる。タール の量はリグニンに比べれば多いがセルロースに比べるとはるかに少ない。

リグニン単独のガス化ではタールとして放出されにくいものがバイオマスのガス化初期 において放出されることや水溶性のタールも初期の揮発量が多くなることの原因としては、 木材ではリグニン単独の場合に比べて縮合がしにくくチャー化が抑制されること、また初 期にバイオマス内部のヘミセルロースがタールとして揮発することによって、それととも にセルロースやリグニン由来の成分も揮発していくといった可能性が考えられる。

(結論)

連続十字流移動層型微分反応器を用いてバイオマスを水蒸気ガス化し、揮発、生成した ガス、タール、チャーを一定の反応時間で分取し分析した。それにより、以下の知見を得た。

673 Kにおいては、セルロースの水蒸気ガス化と熱分解の反応に大きな違いは見られない。

673 K におけるバイオマスの水蒸気ガス化において、ガスの発生傾向は各成分における 発生傾向に沿った傾向を示す。

タールの組成は反応時間によって変化し、初期はヘミセルロースとセルロース由来の水 溶性成分とリグニン由来の非水溶性成分がともに含まれ、非水溶性成分はリグニン単独で ガス化を行った場合よりも多く揮発すること、水溶性成分もセルロース単独の場合に比べ て早く放出される。

反応開始後30 s付近のタールはセルロース由来の親水性成分が主成分である。

以上のことから、バイオマスのガス化の際、初期に揮発するヘミセルロースが他の成分 の揮発に影響を与えていることが示唆された。

2) バイオマス由来タール分解触媒の開発

(目的)

本研究ではタール中に含まれ、最も反応性が低いナフタレンをタールのモデル化合物として用い、ナフタレンの水蒸気改質反応にCoO-Mg0固溶体触媒を適用し、高活性・長寿命な触媒系を開発することを目的とした。また、CoO-Mg0固溶体触媒とNi/Mg0触媒の性能を

比較した。

(実験)

Co-MgO触媒は、様々なCo担持量 (0.5 ~ 36 wt%)をMgO (JRC-MGO-3)に含浸し加熱攪拌 後、乾燥 (383 K, 12 hr)して調製した。乾燥後、様々な焼成温度 (873 ~ 1273 K) で Air中焼成した。調製した触媒のキャラクタリゼーションは、TPReduction, CO化学吸着量 測定, CO-TPD, TPOxidationをALTAMIRA AMI-200を用いて行った。また、XRD測定も行った。

ナフタレンの水蒸気改質反応活性測定は、常圧固定床流通系を用いて行った。Co-MgO触 媒を反応器内に1 g充填し、50% H2+Ar (40 ml.min-1) 流通下, 1173 Kで前処理を行い、 Ar気流下で1173 Kで保温し、反応ガス(C10H8 / H20 / N2 / Ar)に切り換え、空間速度 6000 h-1で2 ~ 8時間反応を行った。未反応ナフタレンはTar trap内のcotton filterで 回収し1 hrごとに重量を測定する。生成ガス (H2, C0, C02, CH4, C2H4, C2H6) は、GC-TCD (HP6890N) で分析した。

(結果と考察)

まず、様々なCo担持量のCo-MgO触媒を調製後、TPR, CO化学吸着量, CO-TPD, XRD測定を 行った結果、Co担持量が多く(>4wt%)、焼成温度が低い(< 973 K)場合、含浸したCoは Co304, MgCo204を形成し、H2還元によって、粒径の大きなCo金属粒子を形成する。一方、 CoO-MgO固溶相を有するサンプルをH2還元すると、Co金属粒子のsinteringを抑制し、粒径 の小さいCo金属粒子を形成できることが分かった。また、最適反応条件を用いて、様々な 担持量のCo触媒による水蒸気改質反応活性測定を行った結果、873 Kで焼成した12wt%

Fig. 4 Catalytic performances of various Ni loading amounts of Ni/MgO catalysts precalcined at 873, and 1173 K followed by reduction at 1173 K as a function of times-on stream under the flow of C10H8 (3.5 mol%), H2O (21 mol%), N2 (20 mol%) and Ar (balance) with SV=3000 h-1 at T=1173 K; \bigcirc 12 wt% Co/MgO (873 K), • 12 wt% Ni/MgO (873 K), ▲ 12 wt% Ni/MgO (1073 K), ● 12 wt% Ni/MgO (1173 K), \square 36 wt% Ni/MgO (873 K), ◆ 36 wt% Ni/MgO (1173 K), \triangle 4 wt% Ni/MgO (873 K), ◊ 4 wt% Ni/MgO (1173 K).

Table 1 Conversion, product composition, and the percentage of reacted $H_2O^{(a)}$ over all Ni loaded catalysts (873 K, 1173 K), and 12 wt% Co/MgO (873K) catalyst

Ni loading [wt%]	Carbon conversion to gas [%]	H ₂ [mol%]	CO ₂ [mol%]	CO [mol%]	CH ₄ [mol%]	C ₂ H ₄ [mol%]	Reacted H ₂ O [%]
0	3.7	62.5	26.7	7.0	3.0	0.8	9.3
4	4.3	64.8	26.2	3.8	4.5	0.7	11.4
4 ^(b)	3.0	66.7	23.8	4.9	3.9	0.7	10.0
12	7.9	77.2	19.9	2.9	0	0	39.3
12 ^(b)	9.4	76. 7	19.4	3.9	0	0	41.5
12(c)	23.3	70.0	27.5	2.4	0.1	0	57.6
36	5.7	75.9	21.6	2.5	0	0	26.1
36 ^(b)	4.9	74.8	22.7	2.5	0	0	20.3

(a) Reaction conditions; Steam/Carbon=0.6, T=1173 K, SV=3000 h⁻¹, τ =2 s, reaction time 2 hr

(b) Catalysts pre-calcined at 1173 K

(c) 12 wt% Co/MgO (873 K) catalyst

Co/Mg0触媒が高活性(23%)を示した。これらの結果から、金属Co表面積が活性の向上に 寄与することを示唆した。

Ni/Mg0触媒(873 K、1173 Kで焼成)と12wt%Co/Mg0触媒(873 Kで焼成)との1173 Kに おけるナフタレンの水蒸気改質の比較をFig. 4とTable 1に示す。4wt%Ni/Mg0触媒は、金 属Niがほとんどなく、活性はすぐに低下したが、12wt%Co/Mg0触媒と12-36wt%Ni/Mg0触媒 は触媒性能の劣化は3h見られなかった。

(結論)

Co/Mg0触媒とNi/Mg0触媒のナフタレンの水蒸気改質反応の活性を調べた。12wt%Co/Mg0 触媒が最も活性が高く、3 h、23%の転化率であった。

3)流動層反応器によるバイオマスからのガスとチャーのコプロダクション

(目的)

バイオマスの完全ガス化を目標とするのではなく,吸熱反応である炭化水素資源のガス 化によって水素,CO等に変換し,余剰熱エネルギーが有するエクセルギーを可能な限り回 収する.一方,副生成物として発生する反応性の乏しい炭化物は土壌改質剤・簡易型吸収 ・吸着剤として利用する.本年度は,活性アルミナ粒子のような多孔質粒子を流動媒体に用 い,生成したタールを応場で捕獲することが可能であるか否かを,実際の循環流動層ガス化装置 での連続操作により確認することを目的に実験を行った.また,粒子種類の影響も調べた.

(実験装置および方法)

ガス化実験に用いた実験装置の概略図をFig.5に示す.本実験装置は全て石英ガラス製 で、高さ2500mm・内径23mmのライザー、サイクロン、ループシール、燃焼再生炉、ダウン カマーで構成されている.バイオマス試料はスクリューフィーダーでライザー最下部に連 続供給し、流動化ガスによりライザー最下部へ搬送した.生成ガスからサイクロンにより 分離された、タールを吸着した粒子及び未反応のチャー粒子は、燃焼再生炉へ送られ、燃 焼再生される.実験試料としては杉の心材チップを用い、これを2mm以下に粉砕し、110℃ で十分に乾燥させたものを用いた.分析値をTable 2に示す.また、流動媒体としては、 活性アルミナ粒子、ゼオライト粒子を用いた.ガス組成は生成ガスを直接小型ガスクロマ トグラフに導入し5分ごとに分析した.タールについては、SPAカラム法によりその濃度を 測定した.

(結果および考察)

・熱分解実験によるガス化特性

本実験装置の連続運転における装置および生成ガスの安定性を確認するため,873Kにおいて2時間の連続運転を行った.そこで得られた生成ガス中の主要成分の生成量をFig.6に示す.横軸はバイオマス供給開始からの時間を示している.これより,各成分ともバイオマス供給開始から10分程度の間は徐々に上昇し,それ以降はほぼ安定したガス生成となっていることが確認できる.また,生成ガスに加え燃焼再生炉からの排ガス中のCO₂,COを 測定することで炭素に関する物質収支をとったところ,捕捉した炭素は供給したバイオマス中の炭素の100%に近い値を示した.このことから本実験装置による運転が安定で定常

Table 2 Analytical values of biomass

Fig. 5 Experimental setup

状態を達成できること、および燃焼再生炉でタールを捕獲した媒体粒子はほぼ完全に再生 が行なわれていることを確認した.Fig.7に冷ガス効率と総ガス生成量の温度による変化 を示したが、温度の上昇とともに冷ガス効率、総ガス生成量ともに上昇することを確認し た.

SPAカラム法によるタール生成量は、アルミナ粒子を用いた場合排気ガスベースで 0.4g/m³、生成ガスベースでは、8~12g/m³であった.しかしながら、アルミナ粒子を使用 しないガス化条件では200~300 g/m³(生成ガスベース)の濃度のタールが発生するが、 これと比較するとタールは大幅に減少していることが確認できた.このことから,循環流動層という希薄な場においても,これまで報告された固定層と同様に,さらにライザー内における短い滞留時間(2~3秒程度)であっても多孔質粒子によるタールの捕獲は十分に行われていることを確認した.

・ガス化特性に及ぼす媒体粒子の差異の影響

流動媒体を活性アルミナからゼオライトへ変え、他の条件は同一にして熱分解ガス化実 験を行った。冷ガス効率、炭素転換率、生成ガス発熱量をTable 3に示す.ゼオライトを 用いた場合も活性アルミナのときと同様にガス化温度の上昇にともない冷ガス効率は上昇 した.また、炭素転換率についてもどちらの粒子を用いた場合もガス化温度の上昇に伴っ て増加した。冷ガス効率、炭素転換率についてはガス化温度に対して同一の傾向が見られ ただけでなく、ほぼ等しい値を示すことが確認できた。しかし、発熱量については、活性 アルミナにおいてはガス化温度が上昇してもさほど変化が見られなかったのに対して、ゼ オライトの場合は増加した。この理由として生成ガスの組成が変化したことが挙げられる。 Fig.8に熱分解実験における各粒子、温度条件による生成ガス量を示した。各ガス化温度 により比較すると、活性アルミナの結果に比べゼオライトでは総ガス生成量が減少し、組 成はH₂、CO₂が減少し、COが大きく増加している。総ガス生成量に対する可燃性ガスの割 合が増えており、その結果、単位体積あたりの発熱量が上昇したことが分かる。媒体粒子 をゼオライトに変更した場合も配管へのタールの付着はわずかに確認された度素の物質収

	Tempreture [K]	activated alumina	zeolite
	873	0.16	0.15
Cold gas efficiency [-]	923	0.20	0.19
	973	0.24	0.24
	873	21.00	20.67
Carbon conversion [%]	923	25.80	24.31
	973	30.00	27.78
Colorific volum	873	3538	3610
	923	3660	3912
[rvcat/1vtfb]	973	3510	4088

Table 3 Cold gas efficiency, carbon conversion, and heating value of product gas.

Fig. 8 Product gas yields for activated alumina and zeolite.

支についても生成ガスと燃焼排ガスとの合計で100%に近い値を示したことからタールの 捕獲および燃焼再生が十分に行われていることを確認した.この結果,タールの捕獲に関 しては活性アルミナとゼオライトでほぼ同等の能力であることが確認できた.ゼオライト はアルミナに比べ安価であり、タール捕集効果,ガス化特性もアルミナと同等であること から、ゼオライトが優れていると評価できる.

(結論)

(1) 流動媒体に活性アルミナ, ゼオライトなどの多孔質粒子を用いることで循環流動層のような希薄かつ短時間のガス化でもタールの捕獲が可能である.

(2) タールを捕獲した多孔質粒子は本実験装置の燃焼再生炉では873Kでほぼ完全に再生する.

(3) 流動媒体にゼオライトを用いることで、活性アルミナを用いたときに比べ、総ガス生成量は減少するが、発熱量が増加した.冷ガス効率はほぼ一定である.

(2)物質生産におけるエネルギーコプロダクション

1) 耐熱性アルミナ炭素ナノコンポジット及びそれを原料とする高表面積耐熱性アルミナの製造

(緒言)

多くの触媒プロセスで問題となるのは高温下(800℃以上)でのアルミナのシンタリ ングである.いかに表面積の大きなガンマ型アルミナであっても,昇温の途中,アルファ 型に転換する時に表面が潰れ,表面積は通常3 m²g⁻¹程度に低下する.もし熱安定な高表 面積のアルミナが調製できれば,実用面での波及効果は大きい.酸化物のシンタリングは 粒子同士の接触により起こる.酸化物(アルミナ)ナノ粒子が熱的に安定な媒体に包接さ れていればこれを防ぐことができ,元の形態(粒子径や形)を保護できるであろう.これ が本研究の動機である.炭素は非常に高い温度まで安定であり,調製時に残っている有機 物質を不活性気体中で加熱し,1050-1350℃で炭化することによりアルミナ前躯体を炭素 でおおい,アルミナをガンマ型のままの微結晶に留めることができるであろう.

(実験)

・含炭素高比表面積ガンマ型アルミナ製造方法

高比表面積の含炭素アルミナは以下の複数のプロセスを経て製造された. (A) 逆ミセル(油中水滴)相の調製, (B) アルミニウムアルコキシドを油相から水ナノエマルジョンに移し加水分解させる, (C) 更に水熱合成条件下で加水分解を進める, (D) 油相除去,

(E) 不活性気体中での低温(250℃)加熱, (F) 同条件での高温(600-1340℃)加熱,

(G)得られる含炭素アルミナを空気又は水蒸気焼成し炭素制御する.(A)から(F)までは 含炭素アルミナの製法であり,(G)を加えることにより含炭素量を制御することができる.

(A)~(F)の操作の1例は以下の通りである.

(A)油相としてのイソオクタン(2,2,4-トリメチルペンタン)140mlに界面活性剤として ポリエチレングリコール200(PEG200)20mlと安定剤としてn-プロパノール270mlを添加し, 混合物が均一になるまで数分間攪拌した.得られた油相一界面活性剤--アルコールの混合 物に,脱イオン水(50m1)を滴下すると,ナノサイズの水滴が油相中に形成された.こうして得たエマルジョンは透明であり,水滴の寸法は3から10nm程度であると推察された.

(B)キレート剤3-オキソブタン酸エチル (Etyl acetoacetate, EAA) (20ml) にアルミニ ウムプロポキシド (1.836g) を攪拌しながら加え70℃に上げて約2時間保った後にイソオ クタン20mlを添加して更に1時間攪拌し,完全に溶解させた溶液を準備した. これを濾紙 で濾過しながら上記エマルジョンに加えた. その後,室温で17時間保った. この間沈殿物 等は生じなかった. この間アルミニウムイソプロポキシドがナノサイズの水滴中に移り, 加水分解を続ける.

(C)容器をオートクレーブに入れて150℃(15atm)20時間処理して水相中で加水分解し, 形成された水酸化物(結晶)を熟成させた.容器底に白色粉末(ベーマイト)が得られた.

(D)得られたエマルジョンを80℃でロータリーエバポレータにより溶媒(イソオクタン, プロパノール)を除去して,ナノサイズの水酸化物粒子をエマルジョンから分離した.分 離したナノサイズの水酸化物粒子は不揮発性の水, EAA, PEG-200を含む高粘度液体中に存 在する.

(E)得られた試料をアルゴン気中250℃で12時間焼成した.

(F)次に600℃で1時間,または1050℃で24時間,または1340℃で0.5時間アルゴン中にて 焼成した.

・含炭素アルミナのキャラクタリゼーション法

XRD測定(Rigaku Geigerflex RAD-1VB), 窒素によるBET測定(BEL SORB 28SA)を行った. 形態変化を調べるためTG-DTA(Seiko Instruments 3200 U), さらに, 炭素含量を調べるた め昇温TPO測定をTCD付のChembet 3000-Quantachrome Instruments apparatusを用い, 3% O₂ in He (流量 70 ml min⁻¹), 昇温速度10 ℃ min⁻¹にて行った. 代表的な資料は TEM(Philips CM 20)測定を行った.

(結果と考察)

・含炭素アルミナ生成物のキャラクタリゼーション

得られた試料をアルゴン気中250℃で12時間焼成した後(プロセスE)のもの,さらに 600℃で1時間,または1050℃で24時間,または1340℃で0.5時間,アルゴン中で焼成を行 った(プロセスF)もののXRD,BET測定を行い,整理し,Table 4に示す.

Table 4 Characterization data of the carbon-alumina composite materials after calcination in Ar at different temperatures.

Ar	SBET	Pore-size	Pore-vol	d_{XRD}	S_{XRD}	Main
Treatment	m^2g^{-1}	nm	$\mathrm{cm}^3\mathrm{g}^{-1}$	nm	m^2g^{-1}	Phase
250°C, 12h	0.1			6	270	Boemite
600°C, 1h	90	<1	0.29	4	405	γ (+B)
1050°C, 24h	35	<1	0.12	4	405	γ
1340°C, 0.5h	20	<1	0.08	5	324	γ

Table 4にはXRDから得られる結晶子径,主相,およびBETから得られる比表面積(S_{BET}), 細孔径,空げき率を示す.更に結晶子径から計算される粒子の比表面積(S_{XRD})も示した. 250℃焼成後はベーマイトA10(OH)でありその結晶子は6nmと小さく,比表面積(S_{XRD})は 270 m²g⁻¹と計算される.実際の比表面積(S_{BET})が0.1 m²g⁻¹と小さいのは未分解炭化水素 に包み込まれているためである.

600℃焼成後ベーマイトを一部残し,主相はガンマアルミナとなる.1050℃,1時間焼成 でもほぼ同じである.この時の結晶子径4nmは405 m²g⁻¹の表面積(S_{XRD})に相当するが,実 際(S_{BET})は90 m²g⁻¹であり,分解した炭素に覆われていると考えられる.1050℃で24時間 焼成後ベーマイトは消失しガンマ相のみとなり,結晶子径は変わらない.実際の比表面積 (S_{BET})が35 m²g⁻¹に低下したのは炭素が細孔を更に覆ったためと考えられる.1340℃,1 時間焼成で粒子径が若干増大するが,ガンマ相のままでありアルファ型アルミナは観測さ れなかった.この温度でガンマ相が保たれている知見は初めてである.

・空気処理による含炭素量制御アルミナ生成物のキャラクタリゼーション

不活性気流下1050℃処理(最終プロセスF)をして炭素マトリックス中にガンマ型で存 在するアルミナ試料を空気中800℃5時間,または900℃5時間,または1050℃24時間,また は1340℃10分焼成(プロセスG)した試料のXRDチャート(800℃を除く)を図9に,その結 果を整理したものにBET測定の結果を加えたものをTable 5に示す.

Fig.9 Effect of the recovery temperature on the phase composition of the alumina nanoparticles derived from composite material. A, g-Al_2O_3 obtained by calcination at 900 °C for 5 h in air; B, alumina recovered by calcination at 1050 °C for 24 h in air; C, a- Al_2O_3 resulted after calcination at 1340 °C for 10 min in air. \bigcirc , g-Al_2O_3; \diamondsuit , q- Al_2O_3; \square , d- Al_2O_3; \blacktriangle , a- Al_2O_3.

 $600 \sim 800 ^{\circ}$ 焼成したものはほぼ1050 $^{\circ}$ 不活性 気体焼成のものと同じアルミナの形状を示し ている.即ちガンマ型,結晶子径5nm(理論比 表面積(S_{XRD})324 m²g⁻¹)である.異なるのは 実際の比表面積(S_{BET})300±20 m²g⁻¹が理論値 (S_{XRD})とほぼ一致する点である.これは包み 込んでいた炭素が全て分解したためである. この試料は900 $^{\circ}$ (5時間)焼成してもほとん ど変わらずガンマ型であり,わずかに結晶子 が増大し,6nm(理論値(S_{XRD})270 m²g⁻¹)と なり,実際の比表面積(S_{BET})は142 m²g⁻¹とな った.TEM測定によるとクラスター化した3~

Table 5 Characterization of the alumina naparticles obtained after the removal of carbon matrix at different temperatures.

Air	SBET	Pore-size	Pore-vol	$d_{\rm XRD}$	$\mathbf{S}_{\mathrm{XRD}}$	Main
Treatment	m^2g^{-1}	nm	$\mathrm{cm}^3\mathrm{g}^{-1}$	nm	m^2g^{-1}	Phase
800°C, 5h	320	3.1	0.75	5	324	γ
900°C, 5h	142	8.1	0.57	6	270	γ
1050°C, 24h	1 75	6.8	0.39			γ,α
.340℃, 10mir	n 14	<1		30	50	α

Fig. 10. DTA profiles associated with carbon matrix removal as CO_2 (A) and with the $\gamma \rightarrow \theta \rightarrow \alpha - Al_2O_3$ transitions (B). TG-DTA experiment was carried out in air stream.

9nmの結晶が分布していること,空げき率Vpが小さくなった(表5)ことなどで理論値より 小さい比表面積を与えていると考えられる.

前述した通り, ガンマアルミナ表面の0H同士が接し, 脱水してシンタリングにより粒子 径が増大する可能性があるが, 125 m²g⁻¹以上の高比表面積のガンマ型である限り表面エネ ルギーの観点からその進行は遅い.しかし1050℃24時間空気焼成によるとガンマ型は部分 的にアルファ型に転じ, 比表面積も75 m²g⁻¹となる.更に1340℃焼成では全てがアルファ 型となり比表面積も14 m²g⁻¹に低下する.

この結果から明らかなように1050℃不活性気体中で安定化された炭素中ガンマ型アルミ ナは800℃までの空気焼成処理によって炭素を完全に除くことができ、アルミナの形態を そのままに保つことに成功した.800℃で安定な高比表面積(300 m²g⁻¹)ガンマアルミナ の新しい製法として提案するものである. アルゴン下1050℃ 24h焼成試料 (プロセスF) を空気中,一定速度で昇温したことによ る重量変化 (TG),及び熱変化 (DTA)を調べ,プロセスGにおける変化を調べた.その結 果を図10に示す.Aは重量変化の微分曲線であり,炭素の分解が500℃で始まり750℃で終 了することを示している.又この時の重量分析から出発試料 (1050℃ Ar処理) は炭素55 重量%,アルミナ45重量%を含むことが分かった.

Bは熱分析結果であり、1053℃でガンマからシータ相へ、1224℃でシータからアルファ 相へ変化したことを示している. XRDの結果とよく対応している.

・水蒸気処理による含炭素量制御アルミナ生成物のキャラクタリゼーション

アルゴン下1050℃ 24h焼成した試料 (プロセスA~F) を水蒸気 (23 Torr) を含むアル ゴン気流下900℃ 10 h処理した結果 (プロセスG) を示す.

比表面積は90から284 m²g⁻¹へ,空げき率は0.29から0.47 cm³g⁻¹へ増加した.おそらくア ルミナを包接している炭素は水との反応によりCOと水素に分解され空げき率と比表面積が 増加したと考えられる.比表面積の値が800℃空気処理のもの(表5)とほとんど変わらな いことからもうなづける.この試料の示差熱分析,XRD測定のデータがないため推定でし かないが,水蒸気処理によってもガンマアルミナの相,結晶子径は変わらず,炭素を除去 できることを見出した.

・ガンマ型が安定である理由、形態変化機構

(F) に於いて,高温(600-1340℃),不活性気体下で加熱することにより界面活性剤を 炭化させ、ベーマイトがガンマ型アルミナに変わった.この操作中である限り、1340℃の 高温にあってもアルミナはガンマ型で留まり、アルファ型に転ずることは無い.これは炭 素中に保たれているためと考えられる.一般にアルミナは高温でバルクの相としてはガン マ型よりアルファ型が安定であるが、表面エネルギー的にはアルファ型2.64 Jm⁻²、ガンマ 型1.64 Jm⁻²とガンマ型のほうが安定である.従ってアルミナが高温でも高表面積(例えば 125m²g⁻¹ 以上)に保つことができればガンマ型が安定に存在できる.900℃で150 m²g⁻¹のガ ンマ型であれば安定であるが、50 m²g⁻¹以下ではアルファ型へ転じてしまうであろう.

これらの形態変化機構を図11に示す.

Fig. 11. Synthetic model describing the composite material and carbon-free nanoalumina particles.

2) 高圧メタンリフォーミング反応用Co/SrTiO3触媒の検討

(緒言) メタンのCO₂リフォーミング反応 (CH₄ + CO₂ \rightarrow 2CO + 2H₂) に関する研究の多く は常圧下で行われているが, GTL (Gas to Liquid) プロセスにおける合成ガス製造の視 点から工業的には2.0 MPa以上で行われる必要がある. これは天然ガス田からCH4やCO2が 高圧で得られること,リフォーミング反応の生成物である合成ガスからの液体燃料合成も 高圧下で行われること、高圧系装置がコンパクトになることなどによる.この反応用の触 媒開発上の問題点は触媒上に起こる炭素析出である. 炭素析出反応はメタン分解反応

(CH₄ → C + 2H₂) およびCOの不均化反応 $(2CO \rightarrow C + CO_{2})$ により起こると考えら れている. 高圧下では常圧下に比べ炭素析 出反応がより起こることが知られており, 触媒安定性は高圧下の反応において議論さ れるべきである.

当研究室では、2.0 MPa下のメタンCO。リ フォーミング反応においてCo/SrTiO。触媒を 用いて検討を行なってきた. この触媒は比 較的低転化率の条件では炭素析出が少ない

が、平衡転化率に近い高転化率の条 件では炭素析出が増大していた.1) 今回の報告では、Co/SrTiO₃触媒の 炭素析出の機構をより詳細に調べ, 炭素析出のない触媒開発を検討した.

(実験) Co/SrTiO₃触媒はCo(NO₃)₂・ 6H₂0, SrCO₃, Ti(0-i-C₃H₇)₄と過剰量 のエチレングリコール・クエン酸を 混合し錯体重合法により調製した.

固定床高圧流通系装置を用い、0.5 gの触媒をH。前処 理(常圧, 1173 K, 1 h)後, He中で反応温度(1023 K) まで降温し2.0 MPaまで昇圧, 反応ガス (CH₄/CO₂ = 1) に切り替えて反応を行なった.分析にはGC-TCDを 用いた. 炭素析出量はTemperature-programmed oxidation (TPO) により測定した. 反応後の触媒の状 態を,SEMを用いて観察した.

(結果および考察) 触媒層を石英ウールで4層に分け て活性測定を行った. Fig. 12に1wt% Co/SrTiO₃触媒 のCH4転化率の経時変化を、Fig. 13に反応管のモデル

Fig. 12. Time on stream of CH4 conversion over 1wt% Co/SrTiO₃ catalyst. Reaction condition: 2.0 MPa, 1023K, GHSV = 6,000 h⁻¹.

Product gas CO, H ₂ , H	Table 6 Co catalyst with 2 ^O position.	oke amounts of different catalyst
	1wt%	Coke amount
	Co/SrTiO ₃	(wt%)
	3/4 - 4/4	29.2%
Reactant ga	s (Outlet)	
CH ₄ , CO ₂	2/4 - 3/4	24.5%
Fig 13. Flow syste	m of 1/4 - 2/4	17.0%
the reactor.	0/4 - 1/4	0.15%
り舳捕を日前加	(Inlet)	

Fig. 14. SEM image of deposit carbon on 1wt% Co/SrTiO₃ catalyst

図を示す.活性挙動は反応初期に活性が増加し、反応10時間で最高活性を示した後、比較

的安定した活性を示した. Table 6に反応終了後各層の炭素析出量を示す. 触媒層の前段 (1/4)にはほとんど炭素析出していない(0.15 wt%)が, 触媒層の後段に行くほど, 炭素析 出量が増加していた. 炭素析出の主な原因が反応生成物であるCO由来 (COの不均化反応: $2CO \rightarrow C + CO_2$) であると推察した. Fig. 14に析出した炭素のSEM像を示す. 析出炭素 はwhisker carbonを形成していることが分かった. 今後はCO不均化を抑制する改良が必要 である.

(3) コプロダクションの方法論・プロセス設計手法・基礎理論の確立

前年度に引き続き、コプロダクションシステムの要素技術である基本的な化学反応や熱 変換システムの現象論に基づくモデル化を行い、定常基本特性、動的基本特性等を明らか にした。具体的にはコプロダクションによるエネルギー・物質併産のシナジー効果を定量 化するために、反応操作と分離操作が統合された代表的なプロセスである反応蒸留プロセ ス(図15)において塔の熱効率は、反応操作および分離操作を内部熱統合することにより 本質的に改善される可能性があることに着目した。塔内の反応セクション(発熱および吸 熱)の配置および原料供給の位置により、内部熱統合を効果的に行うことができる。発熱 を伴う反応を回収部(原料供給より下部)に、吸熱を伴う反応を濃縮部(原料供給より上 部)に適切に配置することにより、反応および分離操作の間で内部熱統合の効果を最大化 することが可能なことが示された。そのために大きな発熱または吸熱を伴う反応それぞれ に関する反応蒸留プロセスを例示提案し、設計手法を評価した。また、得られた結果につ いてその実現可能性と有効性をシミュレーションにより確認した。さらに、使用される触 媒の量、混合溶液の相対揮発度および原料の熱的条件に関して感度分析によりその影響を 定量的に検討した。

分離操作へ反応プロセスの熱を統合し、有効利用する方法論で反応蒸留プロセスは、熱 力学の第2法則の観点からは一般に相乗効果による高い効率は望めない。しかしながら上 記のように反応操作および分離操作の間のさらに内部熱統合を求めることによって、初期 投資コストの縮小が可能となる場合があることが示された。一方、動特性、操作・制御性 へのその影響は重要な問題である。反応操作および分離操作のコンビネーションが通常の 蒸留塔よりも反応蒸留塔の制御をより困難にするとともに、さらに内部熱統合を求めるこ とにより、複雑な制御システムの必要性を高める可能性がある。従って今後は、反応操作 と分離操作の間の内部熱統合に対する動特性と制御性を、シナジー効果と合わせての検討 していく必要がある。

(4) コプロダクションのグランドデザインの確立

コプロダクションプロセスの設計を目指し、ナフサ熱分解プロセスを実例として検討を 進めているが、これまでの高温作動型ヒートポンプの導入によるヒートトランスフォーム の検討のみではなく、高温発熱系プロセスであるSOFCを導入したフローシートについて検 討し、導入した場合に熱バランスについて定量的に評価し、過不足の程度を明らかにした。 また、これらの熱のやり取りを如何に高効率で行えるかの実例として熱交換型触媒反応器 の検討も進めた。具体的な反応を例に反応器形状と熱交換、エクセルギー損失との関連を 評価した。

図15 反応操作と分離操作が統合されたプロセス

3. 研究実施体制

コプロダクション研究統括グループ

- 研究分担グループ長
 壊 敦司(東京大学大学院工学系研究科・助教授)
- ⑦ 研究項目
 - ・バイオマス・石炭からのH2とCコプロダクション基礎反応試験
 - ・コプロダクションによるエネルギー・物質生産プロセスのグランドデザイン研究全体を統括する。

物質生産におけるエネルギーコプロダクション研究グループ

- 研究分担グループ長
 秋鹿研一(東京工業大学大学院総合理工学研究科・教授)
- ② 研究項目
 - ・熱化学反応を利用した熱交換器型反応器と新規触媒開発
 - ・化学プロセスのコプロダクション化への検討と研究要素抽出

バイオマス・石炭からのH2とCコプロダクション研究グループ

- 研究分担グループ長
 幡野博之(エネルギー利用部門 クリーン燃料研究グループ・グループ長)
- ② 研究項目

・流動層によるバイオマス等からのガスとチャーの併産技術に関する研究

・バイオマス・石炭からのH2とCコプロダクションプロセス設計

コプロダクションの方法論研究グループ

① 研究分担グループ長

中岩 勝(環境調和技術研究部門 熱利用化学システムグループ・グループ長) ② 研究項目

・コプロダクションのプロセス設計手法等の確立

・エネルギー変換の最適化を図る手法を開発

コプロダクションのグランドデザインの確立

- 研究分担グループ長
 桜井 誠(東京農工大学工学部・講師)
- ② 研究項目
 - コプロダクションプロセスの設計
 - ・コプロダクションプロセスのシミュレーション
- 4. 主な研究成果の発表(論文発表および特許出願)
 - (1) 論文発表
 - Akiyama, T., A. Miyazaki, H. Nakanishi, M. Hisa and A. Tsutsumi, Thermal and gas analyses of the reaction between iron carbide and steam with hydrogen generation at 573 K, Int. J. Hydrogen Energy, 29(7), 721-724 (2004)
 - Chen, W., A. Tsutsumi, Y. Shigaki and K. Otawara, Nonlinear Dynamic Analysis of the Local Heat Transfer Rate in Three-phase Reactors, Int. J. Chem. Reactor Eng., 2, A8 (2004)
 - O Matsuda, S., H. Hatano, T. Muramoto and A. Tsutsumi, Modeling for Size Reduction of Agglomerates in Nanoparticle Fluidization, AIChE Journal, 50(11), 2763-2771 (2004)
 - Hisa, M., A. Tsutsumi and T. Akiyama, Reduction of Iron Oxides by Nano-Sized Graphite Particles Observed in Pre-Oxidized Iron Carbide at Temperatures around 873 K, Mater. Trans., 45(6), 1907-1910 (2004)
 - Hisa, M., A. Tsutsumi and T. Akiyama, Materialographic Investigation on the Mechanism of Hydrogen Production through the Reaction between Iron Carbide and Steam at a Temperature of 673 K, Mater. Trans., 45(6), 1911-1914 (2004)
 - Hisa, M., A. Tsutsumi and T. Akiyama, Microstructure Evolution of Iron Carbide during Reaction with Steam at Elevated Temperatures, ISIJ

international, 44(10), 1748-1752 (2004)

- Furusawa, T., and A. Tsutsumi, Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification, Applied Catalysis A: General, 278, 207-212 (2005)
- Furusawa, T. and A. Tsutsumi, Development of Cobalt Catalysts for the Steam Reforming of Naphthalene as a Model Compound of Tar derived from Biomass Gasification, Applied Catalysis A: General, 278, 195-205 (2005)
- Kuchonthara, P., S. Bhattacharya, A. Tsutsumi, Combination of thermochemical recuperative coal gasification cycle and fuel cell for power generation, Fuel, 84, 1019-1021 (2005)
- 堤 敦司、エクセルギー再生技術による次世代IGCC/IGFC, CCT ジャーナル, 11, 17-22 (2004)
- 堤 敦司,燃料電池技術の市場導入に向けた水素製造・利用技術の開発,工業材料, 53(1),32-36 (2005)
- 堤 敦司, コプロダクションによるC02フリーなエネルギー・物質生産システムの構築, エネルギー・資源, 26(2), 122-126 (2005)
- S. Bhattacharya, A. Tsutsumi, Advances in the Science of VICTORIAN BROWN COAL (edited by Chun-Zhu Li), ISBN: 0-08-0442692, Elsevier, (2004)
- OTOMO, 温 慶如, H. TAKAHASHI, K. KURAMOTO, H. HATANO, S-Y. LIN, "Effect of carbon dioxide absorbent on initial hydrogen production from epoxy resin under high-temperature and -pressure steam conditions", Chemical Engineering Journal, 99-2, pp. 125-129, 2004/6
- 倉本浩司、大友克之、鈴木康一、藤本真司、柴野紗綾夏、松岡浩一、鈴木善三、幡 野博之、山田理、林石英、原田道昭、森下佳代子、宝田恭之, "Localized Interaction between Coal-Included Minerals and Ca-Based CO2 Sorbents during the High-Pressure Steam Coal Gasification (HyPr-RING) Process", Industrial & Engineering Chemistry Research Vol. 43 No. 25 pp. 7989-7995, 2004/11
- 倉本浩司、柴野紗綾夏、松岡浩一、鈴木善三、幡野博之、林石英、原田道昭、宝田 恭之, "Behavior of Minerals Included in Coal during CO2-Sorption-Enhanced High-Pressure Steam Gasification of Coal (HyPr-RING)", 10th The APCChE Congress conference proceedings, 2004/10
- O Chun Yi Liu and Ken-ichi Aika, "Ammonia Adsorption on Alkaline Earth Halides as Ammonia Separation and Storage Procedure", Bull. Chem. Soc. Jpn., 77, 123-131 (2004).
- Sutasinee Kaewpuang-Ngam, Koji Inazu, Takaaki Kobayashi, and Ken-ichi Aika,
 "Selective wet-air oxidation of diluted aqueous ammonia solutions over

supported Ni catalysts", Water Research, 38, 778-782 (2004).

- O Chun Yi Liu, Kentaro Morofuji, Kenji Tamura, and Ken-ichi Aika, "Water Sorption of CaCl2-Containing Materials as Heat Strorage Media, Chem. Lett., 33, No. 3, 292-293 (2004).
- Ioan Balint, Akane Miyazaki, and Ken-ichi Aika, "Effect of platinum morphology on lean reduction of NO with C3H6", Phys. Chem. Chem. Phys., 6, 2000-2002 (2004).
- O Tsukasa Tamai, Koji Inazu, and Ken-ichi Aika, "Enhanced Dichlorodifluoromethane Decomposition with Selective Fluorine Absorption by Acidic Fluorinated Magnesium Oxide", Bull. Chem. Soc. Jpn., 77[6], 1239-1247 (2004).
- Katsutoshi Nagaoka, Kazuhiro Takanabe, and Ken-ichi Aika, "Modification of Co/TiO2 for dry reforming of methane at 2MPa by Pt, Ru or Ni", Appl. Catal. A: General, 268, 151-158 (2004).
- O Ken-ichi Aika, Hidenobu Kobayashi, Kenji Harada, and Koji Inazu, "Novel Anion Exchange Resin-based Catalyst for Liquid-phase Methanol Synthesis at 373-393K", Chem. Lett., 33 [10], 1252-1253 (2004).
- O Koji Inazu, Mai Kitahara, Ken-ichi Aika, "Decomposition of ammonium nitrate in aqueous solution using supported platinum catalysts", Catalysis Today, 93-95, 263-271 (2004).
- Chixiong You, Ioan Balint, and Ken-ichi Aika, "Catalytic combustion of methane over microemulsion-derived MnOx-Cs20-Al2O3 nanocomposites", Appl. Catal. B Environmental, 53, 233-244 (2004).
- Taketoshi Minato, Tomofumi Susaki, Susumu Shiraki, Hiroyuki S. Kato, Maki Kawai, Ken-ichi Aika, "Investigation of the electronic interaction between TiO2(110) surfaces and Au clusters by PES and STM, Surface Science , 566-568, 1012-1017 (2004).
- M. Nakaiwa, K. Huang. K. Iwakabe, A. Endo, T. Ohmori, T. Yamamoto, A. Tsutsumi, "Seeking Synergy in Process Intensification: The key Issue in Process Design and Operation", Proc. of 17th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy and Process Systems (ECOS2004), Vol. 3, No. 16, P. 1355-1362, (2004/7 月)
- A. Rosjorde, M. Nakaiwa, K. Huang, K. Iwakabe, S. Kjelstrup, "Second Law Analysis of an Internal Heat Integrated Distillation Column", Proc. of 17th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy and Process Systems (ECOS2004), Vol.1, No. 16,

P.107-115, (2004/7月)

- K. Iwakabe, M. Nakaiwa, K. Huang. Y. Zhu, A. Endo, T. Ohmori, T. Yamamoto, "Multicomponent Separation by Heat-Integrated Distillation Column (HIDiC)", Proc. of 16th International Congress of Chemical and Process Engineering (CHISA 2004), Vol. (CD), No. 16, P. H5. 1, (2004/8月)
- K. Iwakabe, M. Nakaiwa, T. Nakanishi, K. Huang, Y. Zhu, A. Røsjorde, "Analysis of the Energy Savings by HIDiC for the Multicomponent Separation", Proc. of 10th The APCChE Congress, Vol. (CD), No. 16, P. 4F-06, (2004/10月)
- H.Noda, N. Kuratani, T. Mukaida, M.Kaneda, K. Kataoka, H. Yamaji, M. Nakaiwa, "Plate Efficiency and Heat Transfer Characteristics in Heat-Integrated Distillation", Proc. of 10th The APCChE Congress, (CD), No.16, P. 3P-12-077, (2004/10月)
- K. Iwakabe, M. Nakaiwa , K. Huang , T. Nakanishi, T. Ohmori , A. Endo , T. Yamamoto, "Recent advances in the internally heat-integrated distillation columns (HIDiC)", Proc. of AIChE 2004 annual meeting, (CD), No.16, P.227f, (2004/11月)
- (2) 特許出願 H16年度特許出願件数: 0件(CREST研究期間累積件数: 3件)