2024 年度年次報告書 社会課題解決を志向した革新的計測・解析システムの創出 2024 年度採択研究代表者

橋新 剛

熊本大学 大学院先端科学研究部 准教授

情報と計測の融合による半導体デバイス3次元実装技術の革新

主たる共同研究者:

青西 亨 (東京大学 大学院新領域創成科学研究科 教授) 赤井 一郎 (熊本大学 産業ナノマテリアル研究所 教授) 寺澤 靖雄 ((株)ニデック 研究開発本部 主席研究員)

研究成果の概要

半導体デバイスの3次元積層プロセスに関する技術開発として、TSV 構造形成における課題抽 出を目的に、プロセスパラメータを変更しながら試料を作製し、以下のマクロとミクロ計測を計画した。 まず TSV 構造の信頼性評価で必要な熱特性を明らかにするため、単一層における赤外光加熱 抵抗変化を試行する試験試料を作製した。一方 TSV 構造を形成する際に、その側壁が凹凸とな るスキャロップ構造が形成される。そこで、スキャロップ構造の大きさと特性の関係を明らかにする ため、まずスキャロップ構造を変化させつつ同じ高さの TSV 構造を形成するプロセス条件の検討 を進めた。また絶縁特性は絶縁膜 SiOx の形成プロセスが重要で、ミニマルファブで、そのプロセス 温度を変化させつつ絶縁膜厚を制御するため、各プロセス温度における成膜レートを明らかにし た。一方、I-V 特性からプロセス最適化の指標となる特徴量を抽出するため、I-V 特性を表す現象 論モデルの構築を進めた。TSV の側壁の均質性が高い試料の方が耐電圧と特徴量との相関が高 い妥当な結果が得られた。本研究では、TSV の信号不良に至るミクロな要因の発見を目指す。そ こでまず X 線回折で TSV における Si と絶縁膜の界面におけるミクロな歪みの計測可能性を検討 するため、TSV の界面構造を模擬したプラナー試料を作製した。X 線回折では界面で形成される 界面層の構造変化を高感度に検出できる Crystal Truncation Rods 法を用いる計画である。また、 プロセスで残留する不純物を二次イオン質量分析(SIMS)法で、高感度かつ高解像度に検出する 解析法を構築するため、ウェーハ上に Auドットを配置した試料を作製して SIMS 計測を行った。ま た高解像度解析を実現するためベイズ解析法の開発を進め、Auドットの局在位置を超高解像で 推定できる可能性を見出した。