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Problem of drug discovery
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 Time consuming (10-15 years) and
high cost: about 1 billion S per drug

* High risk: result in failure
— Insufficient efficacy
— Unexpected serious toxicity
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Drug repositioning
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* |dentification of new therapeutic effects (i.e., new
applicable diseases) of existing drugs.

* Fast development and low risk (safety is confirmed).

Example: Sildenafil (Viagra)

Angina — Erectile dysfunction — Pulmonary hypertension
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Many drugs have been provided by finding new effects

+ 2/FTUIL Minoxidil |
— SIMM[E# Hypertension medicine > FEEZ Hair growing agent
« EYFZOXE Bimatoprost
— #XANEZE Glaucoma medicine > £ DIFZMIXT ZFE Eyelash stretch cosmetic
- JJOEZAY Bupropion
— 12 DF| Antidepressant > ZE#HBNIF] Adjuvant for smoking cessation
e L/\SEFK Rebamipide
— BZ Stomach medicine > FSAT7AMDBZE Eye drops of dry eye
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The previous approach has been dependent on serendipity.
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Al-based drug repositioning
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Machine learning methods to predict new associations
between drugs and diseases

known effects
Drug1¢p

/ l Disease 1
Drug 2 *
rug / *Disease 2
Drug 3 2

%7 Disease 3

Drug 4L:5500- = T

new effects to be predicted
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Molecular understanding

of a variety of diseases
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disease-causing genes
environmental factors
abnormal gene expression




{93,

031

*,‘L‘i’éiz’d’ \?E’J&#’—*H%&li

Characterlstlc molecular features are often
shared among different diseases

disease A
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For example, the abnormal expression of PDES is observed in erectile
dysfunction and pulmonary hypertension.
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Drug prediction by machine learning

Predictive models

Model fo(x) - disease A

ChemlcaPtructures and
target protein profiles
of drugs
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Drug candidates
for each disease

Model f ( dlsease B

: Drug class i | Model fo(x) : disease C
Iabel '

(Swada et al, J Chem Inf Model,
55(12), 2717-2730, 2015;
Sawada et al, Sci Rep, 8:156, 2018)

: ‘ applicable
O non-applicableg
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Development of anti-cancer drugs with
low prices and low toxic side-effects

Collaboration with Prof. Tani

o = (University of Tokyo)
F':ﬁ LE PrOblem (lwata et al, J Med Chem,
_ 75‘\/\/[1%14__,?\ X 0)’%1E—L 61, 9583-9595, 2018)
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— Cancer is a leading cause of death worldwide

— Cancer treatment is painful and expensive
« JHLY Aim
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— ldentification of new anticancer effects from existing drugs that
have been confirmed to be safe for humans.



Pathway—based drug discovery

(lwata et al, J Med Chem, 61, 9583-9595, 2018)

Traditional approach Proposed approach
Search for drugs that Search for drugs that
regulate a single biomolecule regulate a pathway
Drug candida Targeting a single biomolecule Drug candidate

a Targeting a pathway

() biomolecule — interaction () biomolecule — interaction
Solution:
Problem: Molecular interactions are
Molecular interactions are not considered by using pathway

taken into account information



Integration of omics data analysis and
molecular network analysis

Drug-induced gene expression data Molecular interaction network
(signaling pathways, metabolic pathways, gene regulations, PPIs)
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prediction

Drug candidates with expected effects



Pathway-based drug discovery for cancers

Exploring drugs that regulate the following pathways:
 Inactivate cell cycle pathways

» Activate p33 signaling pathways

» Activate apoptosis pathways
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Prof. Tani
(University of Tokyo)

(lwata et al, J Med Chem,
61, 9583-9595, 2018)

List of 163 biological pathways

p53 signaling
pathway
apoptosis
cell cycle
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Natural medicine
(e.g., Herbal medicines, Kampo drugs in Japan)
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* |tis popular and useful, but the mechanism is
unclear.

Ordinary drug
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Each Kampo drug contains many compounds and
the mode-of-action is complicated

Ordinary drug Kampo drug
The mode-of-action: one compound- The mode-of-action: multiple compound-
one target interactions multiple target interactions

‘ - ProteinA
compound Compound1
protein .
‘ Compound2
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Efficacy via complex interactions
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Each Kampo drug contains many compounds and
the mode-of-action is complicated

Ordinary drug Kampo drug
The mode-of-action: one compound- The mode-of-action: multiple compound-
one target interactions multiple target interactions
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Most targets
are unknown
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Efficacy via complex interactions
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Target proteins and indications for each Kampo were predicted

Multiple compounds - Multiple proteins

Chemical structure-based prediction by learning
millions of known compound-protein interactions

cd

Compounds
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Interaction
prediction

Grouping of
target proteins
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X :interaction pairs
(O : non-interaction pairs

Kampo A
Indication
o0 prediction
] > | Disease X
Kampo B
O = ) | Disease Y
]
Kampo C
O S j> Disease Z
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(Sawada et al, Sci Rep, 8:11216, 2018;
Douke et al, submitted)
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Prediction of potential target proteins and
new applicable diseases of Kampo drugs

BHEEE S (X5LESFES) DA Example: “Boiogito”

Protein name Protein Applicable disease candidate
function
Target prediction by machine learning (Sinomenine) J
Prediction score Protein-ID select NPs  Protein-Name Pathway KEGG Definition Disease
1.0 1565 1565 CYP2De6 _h5300980 | K07414 cytochrome P450,
family 2, subfamily D
[EC:1.14.14.1]
1.0 26013 26013 |L3MBTLIL NULL 1(3)mbt-like |
1.0 390245 VIS N KOO O jumonil domain -
L\ZNAEZ T ¥R 7%
0.6313302106 2548 2548 hs 1 316 lysosomal §lbha- 'éﬁrouemem of postprandial hyperglycemia of diabetes [Y00499] v
26 Itewly ERECEES U at '
RS
0.572100912 OPRM1 hsa04080 ~ | K04215 mu-type opioid | Adiposity [YO0080] /|

: receptar .
o os [55| WRT) IRy Ry [ 0 A
0.5175897665 8 RK1 hsa04080 v-,K.FJEl kappa-type opioi _ Adiposity [Y00 v . N =
uggeEE ot themachanism of known indication

0.5050411531 55 1551 B CYP3 hsa00140 ~ | K07424 eytochrome P450,
_ i family 3, subfamily A
[EC-1 14 ]4 11
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BAEEEBEADIGA Regenerative medicine
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Computational direct reprogramming (direct cell conversion) by

small compounds (e.g., drugs)

iPS cell
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fibroblast (skin cell)

f.‘ - Direct reprogramming

' . .
(direct cell conversion)

Bz FEAIZLDEEE  gene induction

AKHARDAE: Proposed approach:
Qﬁlﬁ\?'(té%lléiéﬁﬁﬁ compound treatment
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hepatocyte (liver cell)

- r. (Sekiya and Suzuki,
? Nature, 475:390-393 2011)
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Aims:

Avoid cancer risk problem
caused by viruses
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* Machine learning enables to predict new
therapeutic effects of drug candidate
compounds.

—Applicable diseases and health effects
— Cell differentiation abilities



