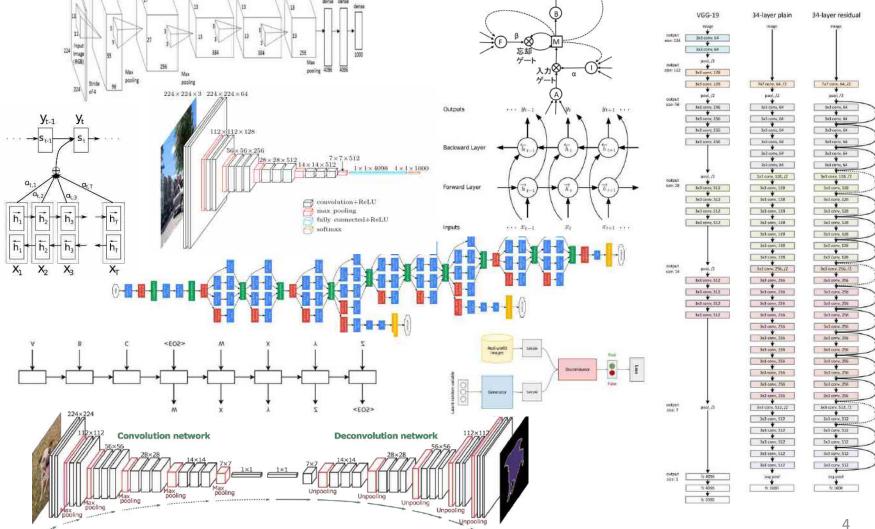
JST AIP Network Lab. 4-th JST-NSF-DATAIA International Joint Symposium " Cutting-Edge of AI Research ~ To Realize Society 5.0 / Smart and Connected <u>Communities</u> ~"

Toward vastly large deep learning

Dec 19, 2019

Koichi Shinoda (Tokyo Institute of Technology)

JST CREST Development and Integration of Artificial Intelligence Technologies for Innovation Acceleration


Fast and cost-effective deep learning algorithm platform for video processing in social infrastructure

PIKoichi Shinoda (TokyoTech)Co-PISatoshi Matsuoka (Riken)Masaki Onishi (AIST)Rio Yokota (TokyoTech)Tsuyoshi Murata (TokyoTech)Hiroki Nakahara (TokyoTech)Taiji Suzuki (U Tokyo)

Background

- Video processing for safe and secure society
 - Prevent traffic accidents (Dashcam)
 - Detect abnormalities (Surveillance camera)
- Deep Learning
 - Much better detection performance than before
 - IT Giants dominate the field

Probably no need to explain what is Deep Learning...

Problem

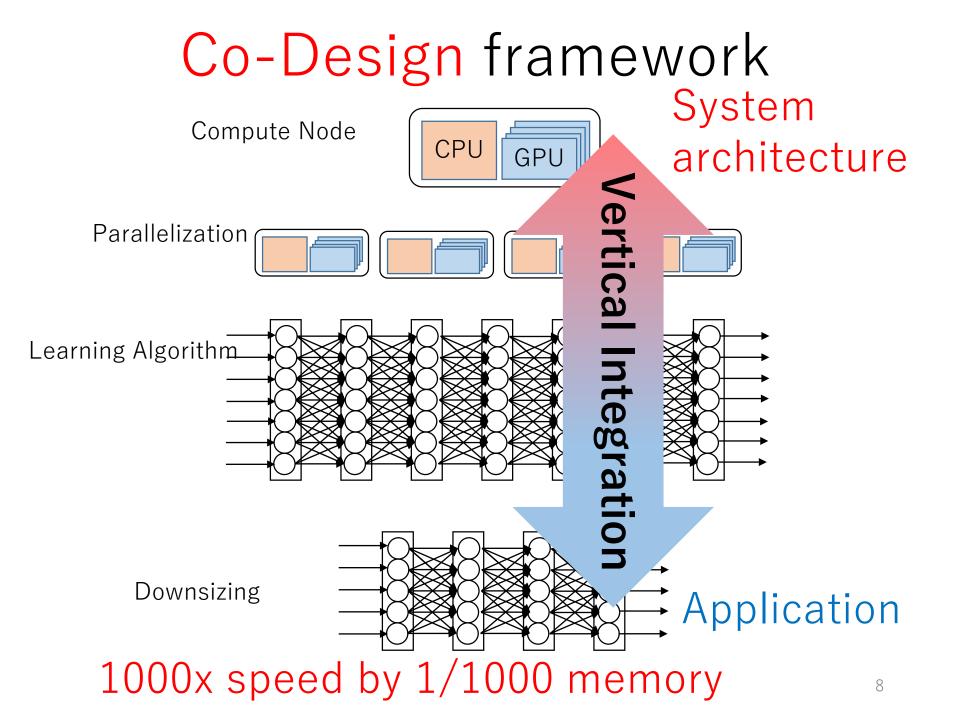
- 1. Analyze a huge amount of images in real-time
- 2. Rapidly Adapt to the changes in environmental conditions
- 3. Edge Computing
 - Reduce traffics on Internet

These problems are deeply related with each other \rightarrow Simultaneous optimization

Our approach

- Develop fast and cost-effective deep-learning algorithm platform for video processing using TokyoTech supercomputer TSUBAME
 - TSUBAME 3.0, 2160 nodes, No.1 in Green 500 It is 10 times faster than 「京」(Kei) for machine learning
 - High standard video search technologies The top group in NIST TRECVID workshop

• Co-Design framework (explain later..)


From system architecture to applications, researchers in different areas collaborate together to maximize the total throughput

Open platform

Work with sensor and network companies to compete with IT giants

Small Phase

Dec 2016 – Mar 2019

Goal in Small Phase

Component	Speed	Memory
Compute node (Yokota G)	50x	1/10
Parallelization (Matsuoka G)	10x	
Learning Algorithm (Shinoda G)	10x	1/10
Downsizing (Murata G)		1/100
Total	> 1000x	< 1/1000

What we showed you two years ago in JST-NSF workshop 2017...

Component	Speed	Memory		
Compute node	7.4 x (50x)	1/15(1/10)		
Parallelization	11.6x*(10x)			
Learning Algorithm	11.6x*(10x)	<mark>2*</mark> (1/10)		
Downsizing		<mark>1/90</mark> (1/100)		
Total	> x1000	< 1/1000		

* : Achievement obtained by the joint work of the two groups

Our achievement in Small Phase

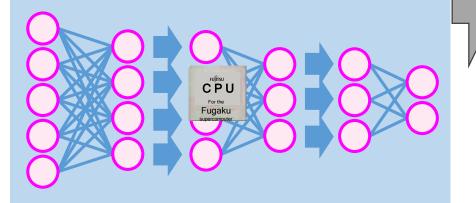
Component	Speed	Memory
Compute node (Yokota G)	<mark>18x</mark> (50x)	1/5 (1/10)
Parallelization (Matsuoka G)	1536x (10x)	?
Learning Algorithm (Shinoda G)	<mark>10</mark> x (10x)	? (1/10)
Downsizing (Murata G)		<mark>1/90</mark> (1/100)
Total	> 1500x	?

Large Phase

Apr 2019 – Mar 2022

Fugaku: Game Changer

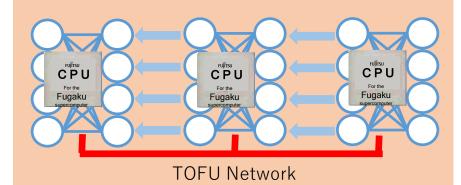
with 150,000 nodes



Prof. Satoshi Matsuoka

Fugaku Processor

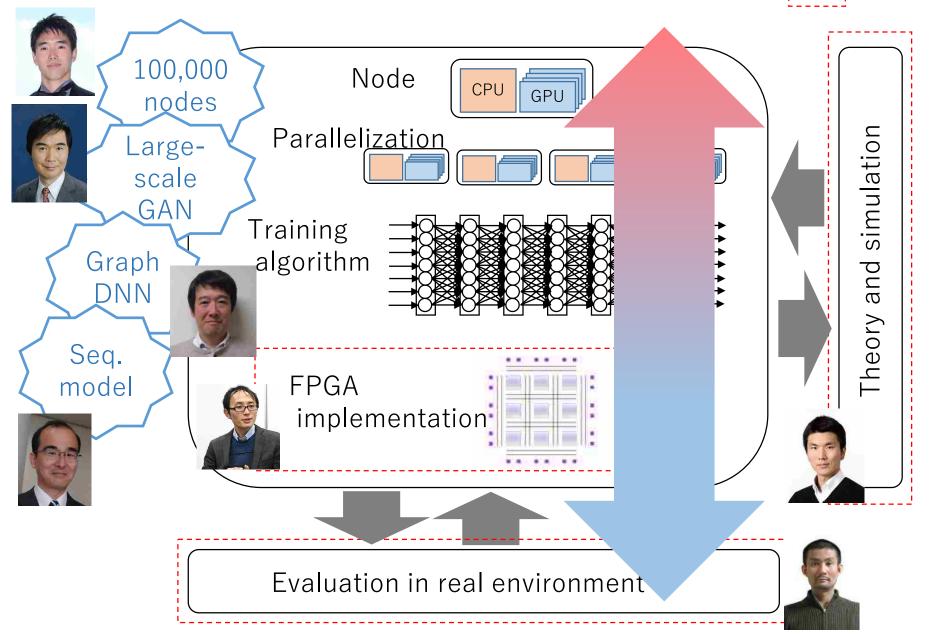
- High performance in FP16&Int8
- High mem band width
- Built-in scalable TOFU network


High Performance DNN Convolution

Unprecedented scalability

Ultra-scalable network

Massive scaling model & data parallelism


Large Scale Public Al Infrastructures in Japan

	Deployed	Purpose	AI Processor	Inference Peak Perf.	Training Peak Perf.	Top500 Perf/Rank	Green500 Perf/Rank
Tokyo Tech.	July 2017	HPC + Al	NVIDIA P100	45.8 PF	22.9 PF / 45.8PF	8.125 PF	13.704 GF/W
TSUBAME3		Public	x 2160	(FP16)	(FP32/FP16)	#22	#5
U-Tokyo Reedbush-H/L	Apr. 2018 (update)	HPC + Al Public	NVIDIA P100 x 496	10.71 PF (FP16)	5.36 PF / 10.71PF (FP32/FP16)	(Unranked)	(Unranked)
U-Kyushu ITO-B	Oct. 2017	HPC + Al Public	NVIDIA P100 x 512	11.1 PF (FP16)	5.53 PF/11.1 PF (FP32/FP16)	(Unranked)	(Unranked)
AIST-AIRC	Oct. 2017	AI	NVIDIA P100	8.64 PF	4.32 PF / 8.64PF	0.961 PF	12.681 GF/W
AICC		Lab Only	x 400	(FP16)	(FP32/FP16)	#446	#7
Riken-AIP	Apr. 2018	Al	NVIDIA V100	54.0 PF	6.40 PF/54.0 PF	1.213 PF	11.363 GF/W
Raiden	(update)	Lab Only	x 432	(FP16)	(FP32/FP16)	#280	#10
AIST-AIRC	Aug. 2018	Al	NVIDIA V100	544.0 PF	65.3 PF/544.0 PF	19.88 PF	14.423 GF/W
ABCI		Public	x 4352	(FP16)	(FP32/FP16)	#7	#4
NICT (unnamed)	Summer 2019	Al Lab Only	NVIDIA V100 x 1700程度	~210 PF (FP16)	~26 PF/~210 PF (FP32/FP16)	????	????
C.f. US ORNL	Summer	HPC + Al	NVIDIA V100	3,375 PF	405 PF/3,375 PF	143.5 PF	14.668 GF/W
Summit	2018	Public	x 27,000	(FP16)	(FP32/FP16)	#1	#3
Riken R-CCS	2020	HPC + Al	Fujitsu A64fx	> 4000 PO	>1000PF/>2000PF	> 400PF	> 16 GF/W
Fugaku	~2021	Public	> x 150,000	(Int8)	(FP32/FP16)	#1 (2020?)	
ABCI 2 (speculative)	2022 ~2023	Al Public	Future GPU ~ 3000	Similar	similar	~100PF	25~30GF/W ???

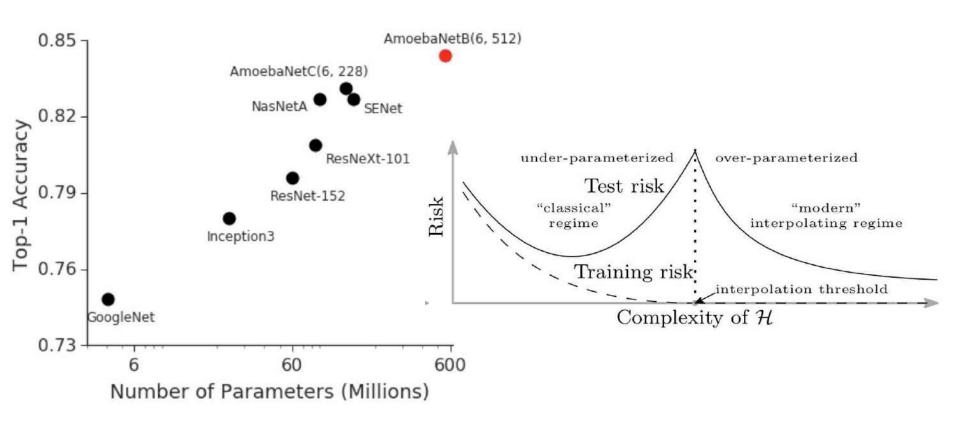
How to reach the goal?

- Massively parallel processing which can scale with 100,000 nodes.
 - Make second-order optimization De Facto
 - Model parallelism
- Video with higher resolution (HD \rightarrow 4K \rightarrow 8K)
- Scale up deep learning algorithm
 - Data augmentation using large-scale GAN
 - Use structured knowledge graphs as inputs
 - End-to-end model for video data
- FPGA implementation
- Theory, Simulation
- Evaluation in real environment (Benchmarking)

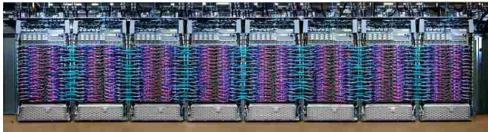
Scale up Co-Design Framework

: NEW

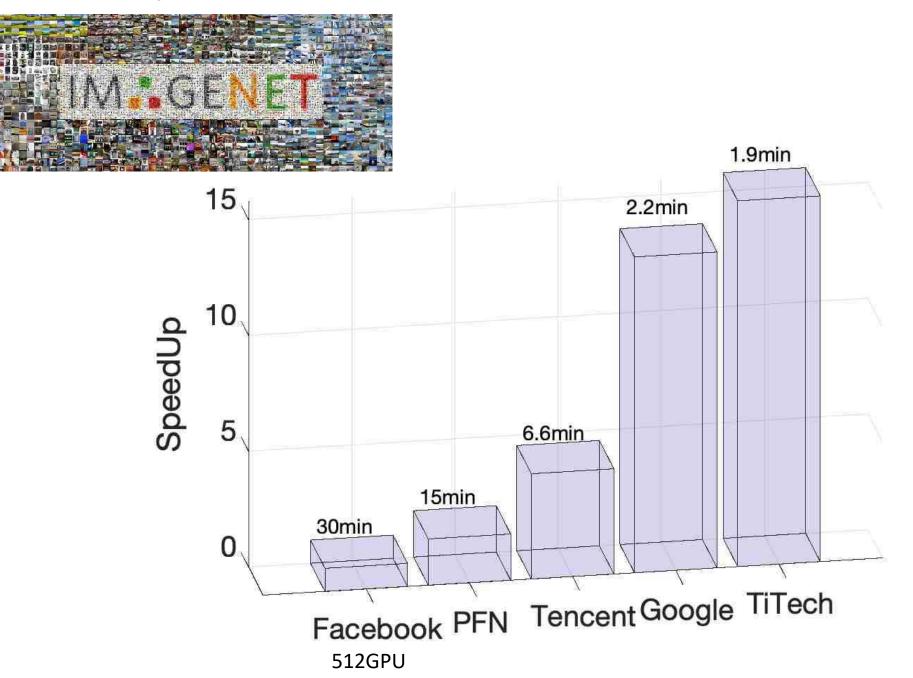
We are studying many topics, but here I introduce two of them...

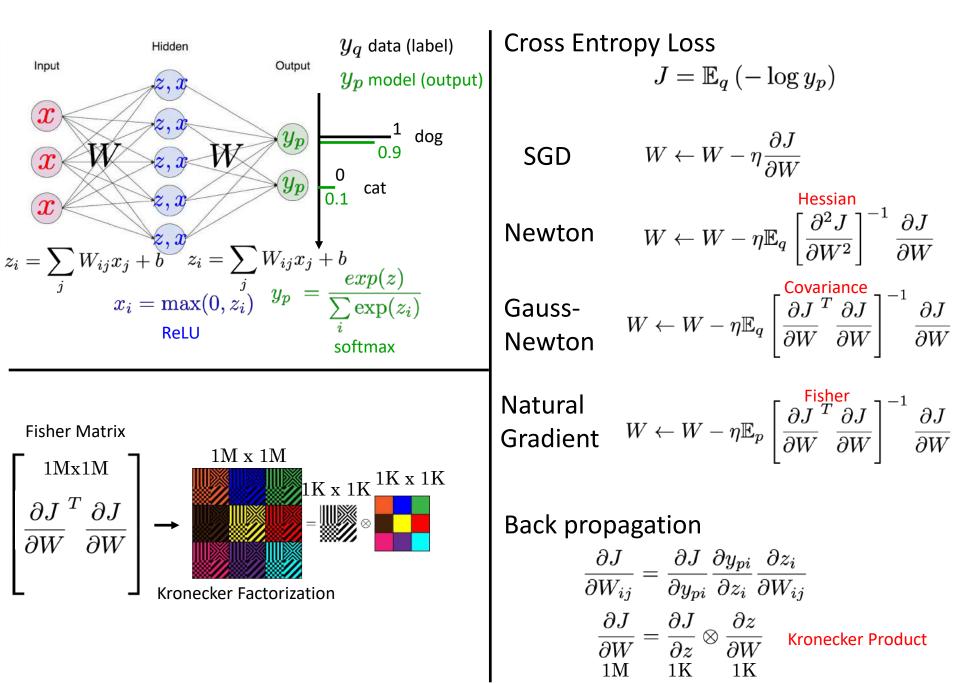

1. Second order optimization for massively parallel computing

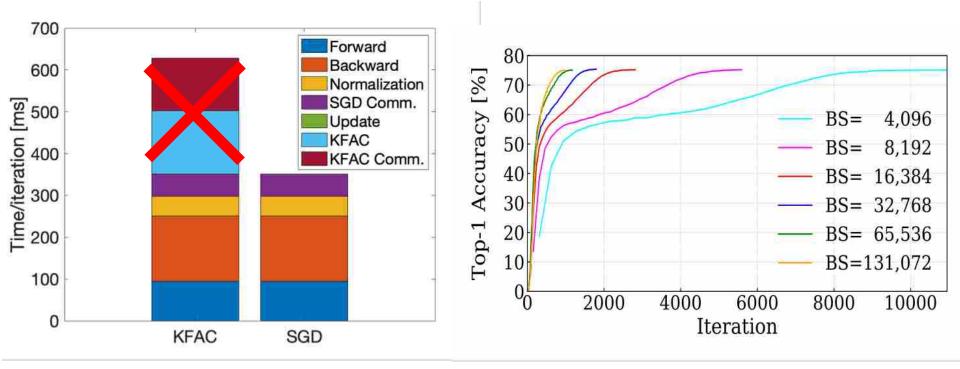
2. Ternary deep neural network accelerator for edge computing


Second order optimization for massively parallel computing

Prof. Rio Yokota


Google TPU v3 12.5PF

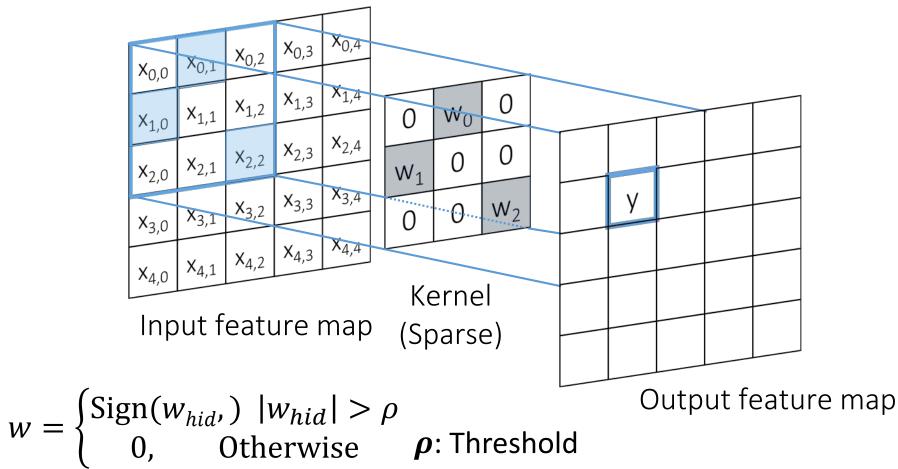

AIST ABCI 17 PF


ImageNet Can be Trained in a Few Minutes

Kronecker Factorization and Second Order Optimizers

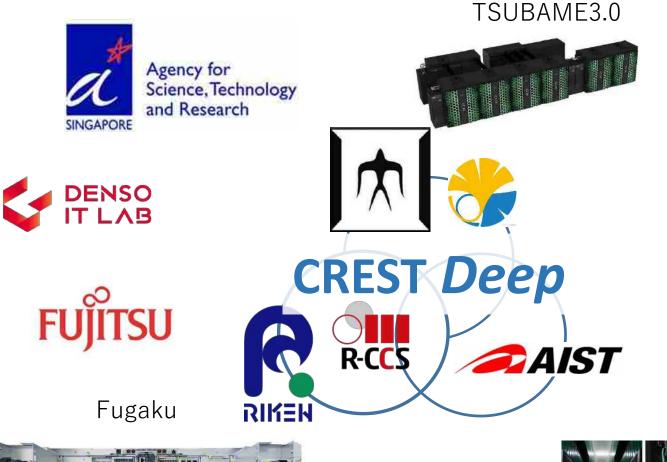
Eliminated the Overhead of Second Order Methods

	Hardware	Software	Mini-batch size	Optimizer	Epoch	Time	Accuracy
Goyal <i>et al</i> .	Tesla P100 \times 256	Caffe2	8,192	SGD	90	1 hr	76.3%
You et al.	$KNL \times 2048$	Intel Caffe	32,768	SGD	90	20 min	75.4%
Akiba et al.	Tesla P100 × 1024	Chainer	32,768	$RMSprop \rightarrow SGD$	90	15 min	74.9%
You et al.	$KNL \times 2048$	Intel Caffe	32,768	SGD	64	14 min	74.9%
Jia <i>et al</i> .	Tesla P40 \times 2048	TensorFlow	65,536	SGD	90	6.6 min	75.8%
Mikami et al.	Tesla V100 \times 2176	NNL	$34{,}816 \rightarrow 69{,}632$	SGD	90	3.7 min	75.0%
Ying et al.	TPU v3 \times 1024	TensorFlow	32,768	SGD	90	2.2 min	76.3%
This work	Tesla V100 × 1024	Chainer	32,768	K-FAC	45	10 min	74.9%


Ternary deep neural network accelerator for edge computing

Prof. Hiroki Nakahara

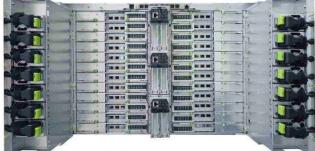
Ternary-weight convolutional NN


Quantize weight value into three values, -1, 0, 1 Most weights are zero! Can save computational cost.

Demo: FPGA implementation

- YOLOv2 is implemented to FPGA(Intel Arria10)
- Three times faster than GPU(RTX2018Ti) with $\frac{1}{4}$ power

Our collaborators



AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL)

ABCI

