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Background
• Video processing for safe and secure society

• Prevent traffic accidents (Dashcam)
• Detect abnormalities (Surveillance camera)

• Deep Learning
• Much better detection performance than before
• IT Giants dominate the field
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Probably no need to explain 
what is Deep Learning…



Problem
1. Analyze a huge amount of images in real-time
2. Rapidly Adapt to the changes in environmental 

conditions
3. Edge Computing

- Reduce traffics on Internet

These problems are deeply related with each other
→ Simultaneous optimization
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Our approach
• Develop fast and cost-effective deep-learning 

algorithm platform for video processing using 
TokyoTech supercomputer TSUBAME
• TSUBAME 3.0, 2160 nodes, No.1 in Green 500

It is 10 times faster than 「京」(Kei) for machine learning
• High standard video search technologies

The top group in NIST TRECVID workshop
• Co-Design framework (explain later..)

From system architecture to applications, researchers in 
different areas collaborate together to maximize the total 
throughput

• Open platform
Work with sensor and network companies to compete with IT 
giants

6



Small Phase

Dec 2016 – Mar 2019
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Co-Design framework

1000x speed by 1/1000 memory

CPU GPU
Compute Node

Parallelization

Learning Algorithm 

Downsizing Application

System 
architecture
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Vertical Integration



Goal in Small Phase 
Component Speed Memory

Compute node 
(Yokota G)

50x 1/10

Parallelization
(Matsuoka G)

10x

Learning Algorithm
(Shinoda G)

10x 1/10

Downsizing
(Murata G)

1/100

Total > 1000x < 1/1000
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What we showed you two years ago 
in JST-NSF workshop 2017…

Component Speed Memory
Compute node 7.4x (50x) 1/15(1/10)

Parallelization 11.6x*(10x)

Learning Algorithm 11.6x*(10x) 2*(1/10)

Downsizing 1/90(1/100)

Total > x1000 < 1/1000
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: Achievement obtained by the joint work of the two groups*



Our achievement in Small Phase
Component Speed Memory

Compute node 
(Yokota G)

18x (50x) 1/5(1/10)

Parallelization
(Matsuoka G)

1536x (10x) ?

Learning Algorithm
(Shinoda G)

10x (10x) ?(1/10)

Downsizing
(Murata G)

1/90(1/100)

Total > 1500x ?
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Large Phase

Apr 2019 – Mar 2022
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Fugaku Processor Unprecedented scalability

High Performance DNN Convolution

Ultra-scalable network

Fugaku: Game Changer

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

C P U
For the

Fugaku
supercomputer

TOFU Network

Massive scaling 
model & data parallelism

- High performance in FP16&Int8
- High mem band width
- Built-in scalable TOFU network

Prof. Satoshi Matsuoka
with 150,000 nodes
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Large Scale Public AI Infrastructures in Japan
Deployed Purpose AI Processor Inference

Peak Perf.
Training

Peak Perf.
Top500

Perf/Rank
Green500
Perf/Rank

Tokyo Tech. 
TSUBAME3

July 2017 HPC + AI
Public

NVIDIA P100
x 2160

45.8 PF
(FP16)

22.9 PF / 45.8PF
(FP32/FP16)

8.125 PF
#22

13.704 GF/W
#5

U-Tokyo
Reedbush-H/L

Apr. 2018
(update)

HPC + AI
Public

NVIDIA P100
x 496

10.71 PF
(FP16)

5.36 PF / 10.71PF
(FP32/FP16)

(Unranked) (Unranked)

U-Kyushu
ITO-B

Oct. 2017 HPC + AI
Public

NVIDIA P100
x 512

11.1 PF
(FP16)

5.53 PF/11.1 PF
(FP32/FP16)

(Unranked) (Unranked)

AIST-AIRC
AICC

Oct. 2017 AI
Lab Only

NVIDIA P100
x 400

8.64 PF
(FP16)

4.32 PF / 8.64PF
(FP32/FP16)

0.961 PF
#446

12.681 GF/W
#7

Riken-AIP 
Raiden

Apr. 2018
(update)

AI
Lab Only

NVIDIA V100
x 432

54.0 PF
(FP16)

6.40 PF/54.0 PF
(FP32/FP16)

1.213 PF
#280

11.363 GF/W
#10

AIST-AIRC
ABCI

Aug. 2018 AI
Public

NVIDIA V100
x 4352

544.0 PF
(FP16)

65.3 PF/544.0 PF
(FP32/FP16)

19.88 PF
#7

14.423 GF/W
#4

NICT
(unnamed)

Summer
2019

AI
Lab Only

NVIDIA V100
x 1700程度

~210 PF
(FP16)

~26 PF/~210 PF
(FP32/FP16)

???? ????

C.f. US ORNL
Summit

Summer
2018

HPC + AI
Public

NVIDIA V100
x 27,000

3,375 PF
(FP16)

405 PF/3,375 PF
(FP32/FP16)

143.5 PF
#1

14.668 GF/W
#3

Riken R-CCS
Fugaku

2020
~2021

HPC + AI
Public

Fujitsu A64fx
> x 150,000

> 4000 PO
(Int8)

>1000PF/>2000PF
(FP32/FP16)

> 400PF
#1 (2020?)

> 16 GF/W

ABCI 2
(speculative)

2022
~2023

AI 
Public

Future GPU
~ 3000

Similar similar ~100PF 25~30GF/W
???



How to reach the goal?
• Massively parallel processing which can scale 

with 100,000 nodes.
• Make second-order optimization De Facto
• Model parallelism

• Video with higher resolution (HD → 4K → 8K)
• Scale up deep learning algorithm

• Data augmentation using large-scale GAN
• Use structured knowledge graphs as inputs
• End-to-end model for video data

• FPGA implementation
• Theory, Simulation
• Evaluation in real environment (Benchmarking)
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Node
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algorithm
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Evaluation in real environment

: NEWScale up Co-Design Framework

100,000
nodes

Large-
scale
GAN

Graph
DNN

Seq.
model



We are studying many topics, 
but here I introduce two of them...
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1. Second order optimization
for massively parallel computing

2. Ternary deep neural network 
accelerator for edge computing
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Second order optimization
for massively parallel computing

Prof. Rio Yokota



Google TPU v3  12.5PF AIST ABCI 17 PF

Training at a Scale Only Possible on Supercomputers



ImageNet Can be Trained in a Few Minutes

512GPU
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0.1

1

0

data (label)

model (output)

SGD

softmax
ReLU

Back propagation

Kronecker Product

Kronecker Factorization

Fisher Matrix
1M x 1M

1K x 1K
1Mx1M 1K x 1K

Kronecker Factorization and Second Order Optimizers

Newton

Cross Entropy Loss

Gauss-
Newton

Natural
Gradient

1M 1K 1K

Hessian

Covariance

Fisher

dog

cat
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Eliminated the Overhead of Second Order Methods
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Ternary deep neural network 
accelerator for edge computing

Prof. Hiroki Nakahara



Ternary-weight convolutional NN
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Input feature map

Output feature map

Kernel
(Sparse)

𝑤𝑤 = �Sign(𝑤𝑤ℎ𝑖𝑖𝑖𝑖, ) 𝑤𝑤ℎ𝑖𝑖𝑖𝑖 > 𝜌𝜌
0, Otherwise 𝝆𝝆: Threshold

Quantize weight value into three values, -1, 0, 1
Most weights are zero! Can save computational cost.



• YOLOv2 is implemented to FPGA(Intel Arria10)
• Three times faster than GPU(RTX2018Ti) with ¼ power
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Demo: FPGA implementation



Our collaborators

ABCI

TSUBAME3.0

Fugaku

CREST Deep


