Causal Inference from Incomplete Data for Fair Machine Learning Prediction

JS ACTX

Yoichi Chikahara (Research Scientist, NTT Communication Science Laboratories)

Outline

To support decisions for individuals (e.g., loan approvals and hiring decisions), machine learning (ML) predictions should be fair with respect to *sensitive features*, such as gender and race. **My aim is to increase the practical applications of this field** by focusing on the real-world data that are difficult to use, which I call *incomplete data*. To achieve this, I will **develop the fundamental causal inference techniques** that employ these data to determine the presence and direction of causal relationships between variables (known as a *causal graph*) and their strength (*causal effects*). From there, I will **work on advancing ML techniques that are both fair and accurate, based on the understanding of causality**.

Research Goals

- 1. Establishing causal inference techniques for incomplete data
- 2. Achieving fair ML predictions based on the above causal inference techniques

Originality and Novelty

<u>Novelty</u> Approaches to problem-solving are novel: To ensure the fairness of predictions, I am revisiting fundamental causal inference techniques for inferring causal graphs and causal effects and aiming for their significant improvement.
<u>Originality</u> I intend to explore interdisciplinary approaches, including but not limited to Bayesian posterior inference and statistical modeling of extreme values.

Challenges

Task setup is far more challenging than existing work: I **focus on realistic scenarios** where we only have access to incomplete data, making it difficult to infer causality.

Future Deployment & Research Plan

<u>Advancement of Statistical Causal Inference (Academic Value)</u> Developing causal inference techniques that do not require strong assumptions will create a wide range of spin-off effects, not only in the field of causal inference but also in various scientific disciplines, such as medicine, life sciences, neuroscience, and meteorology, thus contributing to scientific discoveries.

<u>Support for Decision-Making in the Real World (Social Value)</u> Given that we often encounter incomplete data in real-world decisionmaking scenarios, the societal impact of this work is substantial. Supporting decision-making based on incomplete data while ensuring compliance with laws and regulations will improve the accuracy, speed, and human cost of decision-making. It will lead to an affluent society where we can make effective algorithmic decisions while ensuring that nobody will suffer detrimental treatment.

