2024 年度年次報告書 生命現象と機能性物質 2024 年度採択研究代表者

奥田 綾

京都大学 複合原子力科学研究所 准教授

プロテインライゲーション酵素の新規タンパク質創出への展開

研究成果の概要

本研究では、高い活性を持つ植物由来のライゲーション酵素に着目し、これを用いたプロテイン ライゲーション法を実用化レベルで確立することを目的とする。ライゲーション酵素の極微量な残存 により、ライゲーション産物は保存中や測定中に分解してしまう問題があった。2024度はライゲーシ ョン産物の安定性の問題解決を進めた。まずはライゲーション反応を停止できるようなライゲーショ ン酵素の機能阻害分子の探索を行った。ライゲーション酵素 OaAEP の活性中心システイン及びヒ スチジンを阻害する複数種の還元剤、SH 基修飾剤、金属イオン、認識配列ペプチドを検討したと ころ、還元剤 DTT と各種 SH 基修飾剤が非常に高効率で OaAEP の活性を阻害することを見出し た。また、精製方法の改善による安定性の向上も試みた。その結果、アフィニティカラムを用いた精 製では不十分であり、イオン交換カラムを用いた精製を複数回行うことでライゲーション酵素の残 存を限りなく減らすことが可能であると明らかになった。さらに、幅広いタンパク質へプロテインライ ゲーション技術を適用するために、認識配列の異なるライゲーション酵素である Butelase について も発現、精製、活性化を行った。しかしながら、酵素の安定性や純度の低さの問題から、現状では ライゲーション反応に使用することは難しいため、精製・活性化条件の再検討を今後進めていく予 定である。また、様々な基質の検討として、新たにクリスタリン及びユビキチンの発現系を構築し、 他の機能や構造が異なる基質の発現系構築に着手している。今後、これらの基質を用いたライゲ ーション反応条件の検討を進めていく予定である。