Groundwater Management Issues in Sri Lanka

Gemunu Herath University of Peradeniya – Sri Lanka

Presentation Outline

- Introduction
- Groundwater Management
- Alternatives to Groundwater

Introduction

World Fresh Water Resource

Challenges for a Sustainable Water

<u>Resource</u>

Population growth Urbanization Industrialization Increased water demands

 Increased waste production

•Improved standard of living

Lack of commitments

In Sri Lanka;

Competition and water shortages are increasing because of;

- Rapid economic growth
- High variability in rainfall
- Pollution

As a result;

- Shortage in surface water sources
- Lack of piped water supply (by 2005 only 26.9% had access to pipe water supply)
- Groundwater is being extracted more
 - By end 2005, nearly 70% population relied on groundwater
 - Over 25% of piped water supply is from groundwater
 - Groundwater is becoming a popular source for Agricultural use

Study Areas

Urban Area Details

Colombo

Study area:

- Colombo city and the suburbs
- Land area: 1,610.6 km² •
- Population 4.3 million (2001) •
- Population growth rate 1.7% ullet
- GDP contribution 48.1% (2002) •

Kandy

Study area:

- Kandy city and the suburbs
- Land area: 321.8 km²
- Population 0.81 million (2001)
- Population growth rate 1.2%
- GDP contribution 9.4% (2002)

Geomorphology and Topography

Topography of Sri Lanka is of three plateaus;

2300m, 500m and 0-300m

Kandy - located in the middle plateau at around 500 to 1200m elevation.

<u>Colombo</u> - located in the coastal plains of the western region (wet zone)

<u>Agrowells</u> – mostly located in the northwestern plains (dry zone)

Groundwater Resource in Sri Lanka

IMPORTANT

In most areas GW only within the hard-rock

Distribution of the Major Aquifer Types in Sri Lanka

(Modified from Panabokke and Perera 2005)

Hydrogeology in study cities 6

Colombo:

- Base metamorphic rock 5 to 15 m deep
- Significant section of the study area is formed on river deltas

Groundwater

- 1. Semi-confined hard rock aquifers
- GW in laterite deposits (honey-comb type weathered rock)
- 3. River alluvial aquifers in unconfined deposits

Kandy:

 Base metamorphic rock 0 to 10 m deep

Groundwater

- 1. Semi-confined hard rock aquifers
- 2. River alluvial aquifers in unconfined deposits

Climate

- Sri Lanka divided into three different climatic zones based on amount and pattern of rainfall received.
 - Wet zone (more than 1900 mm rainfall/year)
 - Intermediate zone
 - Dry zone (usually less than 1500mm rainfall/year)
- <u>Colombo</u>

- 2000-2500 mm/year (average 2376 mm/year, monthly maximum and minimum 360mm in May and 78mm in February)
- Kandy
 - 1500-2000 mm/year (average 1841 mm/year, monthly maximum and minimum 278mm in November and 68mm in February)
- <u>Agrowell Area</u>
 - 1000-1500 mm/year

Observed Rainfall Variations

1961-1990

Changes in Wet/Dry spells

Increasing wet spells

Increasing dry spells

Rainfall Changes in Kandy

WATER AVAILABILITY

Country Averages;

- Groundwater : 420 m³/per person (2001)
- Surface water : <u>2,400 m³/per person (2001)</u>
- Rainwater runoff : 1,850 m³/per person (2001)

However, one considers the total aggregate water availability, shows a **reasonable water resource** but, the variations over space and time demand a proper management strategy

Within study areas

Study area	Ground Water	Surface Water	Rainfall
Colombo - average	815	5,300	3,745
Kandy - average	176	2,049	592

() per-capita water availability, * Kelani Ganga basin detailed basin assessment

Present Water Use

-	Surface water Domestic Industrial		Groundwat Deep Domestic Industrial		ter Shallow Domestic	NRW
Colombo (2001)	380,248	158,445	11,151	6,970	234,000	243,956
Kandy (2000)	36,679	5,972	5,546	804	41,000	22,928

Sources for Drinking Water (Source – NWS&DB)

Groundwater use: Colombo over 36%, Kandy over 47% Both groundwater & surface water will be extracted more in future

Groundwater Management Issues

Low Yield and Lower Success Rates

Success rates;

Success rate at well construction = 80% (limit; production well 20 l/min and hand operated well 4 l/min – NWD&DB sources) After about 5 to 6 years of operation success rate = 65%* Wells maintain by local authorities = 50-55%* Our study in Kandy = 50% Lowering success rate with time attributed to poor maintenance and over extractions.

<u>Yields;</u>

Not promising for large scale use since average yield in Kandy area is 90 l/s

1. Problems with Groundwater Exploitation

Some examples

Coastal Aquifers;

- <u>Over extractions during dry season</u> causing saline water intrusions
- Eg. Coastal belt- Specially by Hotel Sector

Laterite Aquifers;

- Shallow well water draw-down as a result of <u>deep</u> well over-pumping
- Eg. Ekala industrial zone groundwater for industry Ragama groundwater for water supply

Semi Confined Hard-rock Aquifers

- <u>Rapid water level draw-downs</u> (over 40 m)
- Eg Bandaragama, Katugastota, Gohagoda, Galhinna
- Decreasing yields
- Eg. Rajapihilla,, Ampitiya, Bokkawala, Katugastota
- Many Abandoned Schemes
- Eg. Kulugammana, Yatihalagala, Kondadeniya

Possible Causes for Failures Note; Hard-rock aquifers

- a. Poor yield estimations
- b. Clogging the fracture zone/path of borehole wells, thus failure to recover even after flushing
- c. Limitations in storage capacity higher yield in newly constructed borehole wells and over-exploitation cause water level depletion
- d. Slow recharging potential in hard-rock/crevice aquifers
- e. Failures in the siphon action within a fracture zone of a borehole well specially during high rate pumping
- f. Lack of information to take timely and adequate measures

Management

Few Years back;

Shift the intake to a new borehole location and abandoned the existing boreholes

In many cases;

Shifting to new locations too were failures, Supply became expensive

With new studies;

Determining the exact yield difficult

Phasing out the use of deep groundwater from fairly large extractions

2. No Reliable Information on groundwater

- Groundwater related data very little; Three main institutions exploiting groundwater
- In most instances, available data is limited to the initial drill log only, after construction little monitoring done.
- No continuous Data. No reliable data.
- Some data collected, during foreign funded projects, is lost or misplaced
- No centralized GW information system.

3. Groundwater Quality Problems

Deep Groundwater

No major widespread quality concerns in two study areas expect for;

- Nitrates (128 mg/l Kandy –East),
- Iron/Manganese and
- Hardness (1,100 mg/l Kandy East and South)

Kandy iron and manganese

Groundwater Quality Problems contd.

Shallow Groundwater;

contamination from;

- From fertilizer,
- Bacteriological (Fecal) contamination from domestic waste
- Untreated industrial discharge (Colombo)

Management issues

1. Pollution control very poor

2. Intension of relevant the authorities is to increase present 60 % access to safe water to 99% by year 2025 However;

Need a clear definition and proper guidelines for categorizing a safe drinking source;

Currently; any piped water supply or so called protected well (a lined well) is considered a safe sources but no quality level/assurance required

Most individual sources even, in some instances piped water supplies do not comply to drinking water standards

Agrowell Program

• Widely used in the dry zone (annual rainfall less than 1500mm) of Sri Lanka

- Initially intended to irrigate during dry season using groundwater and only for off-seasonal cash crops
- Program was funded by both the state and by the NGOs
- Now even used to supply water to paddy cultivation
- Resulted in rapid increase of agrowells specially in the northwest

Affects from Tsunami

Destruction caused - to groundwater sources

Well Monitoring and Cleaning

Impacts to water sector

- Damage to water supply distribution systems
- Damage to the onsite toilet waste pits (over 60,000)
- Tsunami wave intrusion made most wells in the area became saline and also contaminated with fecal matter (Well water COD 128 mg/l, total and fecal coliform levels 30 and 7, conductivity 1169 μ S/cm)
- Over 12,000 wells damaged
- Over pumping for cleaning purposes resulted further damage because of advancement of the salt water wedge

Highlight:

For such cases Collaborative research is very important

Special case: Fluoride Contamination in the Dry Zone

Dry Zone of Sri Lanka

Fluoride and Iron Levels

Wells having quality details

Health issues from Fluoride

1. Dental and Skeletal Flurosis;

Many Thousands sufferers

2. Renal Failure

More and more groundwater uses in dry zone areas affected by renal failures

Clear regions identified

Actual cause still unknown

Is it due to groundwater contaminated with;

- Fluoride?? (number 1 suspect)
- Pesticide??
- Poor Quality fertilizer??
- Poor quality aluminum cooking utensils??

Highlight:

For such cases Collaborative research is very important

Alternatives to Groundwater

Surface Water

- 1. <u>Reliability is low</u> during dry periods (from February to April)
- 2. <u>Quality deterioration</u> due to;
 - Industrial discharges
 - Domestic discharges
 - Salinity intrusion
- 3. <u>Conflicting water allocation</u> priorities between
 - hydropower generation and water supply
 - Irrigation and water supply
- 4. No proper implementation of effluent standards

Rainwater Harvesting

Potential for Rain-Water Harvesting

Rainfall availability along with the recently introduced RWH policy, Potential for HWR an as alternative source for potable water is very good

Average rainfall in Kandy – Wet Zone

In Dry Zone

Rainfall variation

Rainwater Harvesting used in a number of places, but need further work as;

- In urban areas, very few prefer to harvest rainwater
- However, most in peri-urban and rural areas keen to harvest rainwater
- Of them most prefer rainwater for secondary purposes (washing gardening etc.)
- knowledge and awareness on RWH is very poor

Need alternatives and better techniques for;

- New harvesting techniques
- Cheap storage facilities
- Better storage for longer duration use

Highlight:

For such cases Collaborative research is very important

IGES Study

Sustainable Water Management Policy (SWMP) study

was initiated by the Freshwater Project of the Institute for Global Environmental Strategies (IGES),

AIM:

To develop integrated policy options for sustainable water management in Asia

Project Period:

2004-2007 (three years)

Main Focus was on Groundwater issues

IGES Case study Cities

Highlight

Subsequent to a decision taken during a stakeholder meeting through the IGES study, the **National Academy of Science of Sri Lanka** jointly with the Department of Civil Engineering, University of Peradeniya organized a groundwater workshop last month and after this workshop, the Academy took a <u>decision to push for a</u> <u>Groundwater Policy for the Country</u>

