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What does What does 
““Inferring transcription regulatory networksInferring transcription regulatory networks””

mean?mean?
• For each TF, determine its cis-regulatory elements (binding sites) genome-wide.
• Determine which TFs are active under what conditions:

• expression.
• nuclear localization.
• post-translational modifications.
• anything that affects the TF’s affect on its target genes. 

• Determine time-dependent activities of TFs in dynamic processes such as cell cycle, 
developmental processes, etc.

• Determine the effect of each cis-regulatory element on the expression of the target gene.
• Determining the transcription regulatory logic of the cis-regulatory elements, i.e.
mapping from TF binding configurations to effects on expression.

Ultimately we would like to be able to predict the expression dynamics of all genes
essentially just from their DNA sequences



Typical highTypical high--throughput approachesthroughput approaches
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Examples:
Segal et al. Nat. Genet 2003
Beer and Tavazoie Cell 2004

Benefits:
• One identifies regulatory programs
i.e. cohorts of co-regulated genes in the
process/condition under study.
• Relevant pathways identified.
• TFs/regulatory motifs are associated
with the modules. 

Disadvantages:
• Only some genes cluster, cluster boundaries
are often unclear.
• Direct physical meaning often lacking.
• Gene expression profiles are not explained,
but just classified. 



Targeted highTargeted high--throughput approachesthroughput approaches
chIP-chip
chIP-seq

Genome-wide 
binding targets

Examples:
Boyer et al. Cell 2005
Jakobsen et al. Genes & Dev. 2007

Benefits:
• Infer direct molecular interactions.
• Genome-wide. 

Disadvantages:
• Binding does not imply expression effects.

TF knock-down
(e.g. siRNA)

Downstream targets
Examples:
Davidson et al Science 2002
Imai et al. Science 2006

Benefits:
• Identify effects on expression.
• Genome-wide. 

Disadvantages:
• Direct and indirect effects entangled..

• Labor intensive (one TF at a time)
• Need to know the relevant TFs in advance



Accelerating regulatory network reconstructionAccelerating regulatory network reconstruction
through computational predictionthrough computational prediction

Develop a computational frame-work that:
• Uses easily produceable high-throughput data, e.g. micro-array data.

• Predict the transcription regulators that play a key role in the process under study
(developmental time course, response to perturbations, disease versus healthy tissue).

• Predict how the regulators change activity (up-regulation, down-regulation, transient changes).

• Predict the target gene sets of the key regulators.

• Identify the cis-regulatory elements on the genome through which the regulators acts.   

• Real network reconstruction requires targeted and detailed experimental work.
• Provide analysis of high-throughput data that most efficiently tells where to look.



Linear modelsLinear models

• Explicitly predicting gene expression in terms of activities of the transcription factors,
and the response coefficients of each gene to each transcription factor:

fsf gfgsgs ARcce ∑+++= ~noise

Expression of gene 
g in sample s

Basal gene 
expression

Response of gene 
g to factor f.

Activity of factor f
in sample s

• Assumes a linear function. This is wrong but never a bad approximation when changes 
are not too large.

• The activities and response coefficients are inferred from the data and/or computational analysis.

Review: Bussemaker et al. Annu Rev Biophys Biomol Struct 2007



Linear modelsLinear models

• Explicitly predicting gene expression in terms of activities of the transcription factors,
and the response coefficients of each gene to each transcription factor:

fsf gfgsgs ARcce ∑+++= ~noise

Response of gene 
g to factor f.

We use DNA sequence analysis to predict transcription factor binding sites 
and estimate response coefficients in human genome-wide. 



TFBS prediction in mammals:TFBS prediction in mammals:
Focus on proximal promotersFocus on proximal promoters

Challenge:
• The intergenic regions in mammals are vast and functional sites can occur far from the

gene.

• Data from the ENCODE project suggests a large fraction of functional regulatory
sites occurs near TSS. (Nature. 447:799-816 2007 )

• Regulatory sites thought to be distal often turn out to be alternative promoters.
• chIP-chip for several TFs shows peaks at TSS:

However,

We have a technology for mapping TSSs and their expression genome-wide.



Deep sequencing of 5Deep sequencing of 5’’ ends of mRNAsends of mRNAs
CAGE technologyCAGE technology

Cap analysis gene expression for  high-throughput 
analysis of transcriptional  starting point and
identification of promoter usage.
Shiraki et el. PNAS 23 15776-81 (2003)

Tag-based approaches for transcriptome research
and genome annotation
Harbers M, Carninci P.
Nat Methods 2 495-502 (2005)

Tagging mammalian transcriptome complexity
P. Carninci
Trends Genet 22 501-10 (2006)

454/Solexa sequencing.
Mapping to the genome.



Deep sequencing of 5Deep sequencing of 5’’ ends of mRNAsends of mRNAs
Number of samples with > 105 tags 56

Total number of mapped CAGE tags 25,469,648
Number of unique TSS positions 3,006,003

For any given sample the distribution of tags per TSS is a power-law:

The vast majority of TSSs have very low expression: `background transcription’.
The distribution can be used to normalize CAGE-tag counts across samples.



NoiseNoise--model for CAGE expression datamodel for CAGE expression data
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x = true log-expression (per million).
n =  raw number of tags.
t = normalized number of tags.
σ2 = variance of the multiplicative noise.

Measure distribution of observed z-values
for replicates.
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Expression noise can be modeled as multiplicative noise, 
followed by Poisson sampling.
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Observed and predicted replicate noise



Constructing promotersConstructing promoters

Time course

Known
transcripts

What is a promoter?
Answer: A set of neighboring TSSs whose expression-profile is indistinguishable up to noise. 
We also cluster nearby promoters into promoter regions.

Number of promoter regions 43,164
Number of promoters 74,273

Number of TSSs in promoters 860,823
Total number of TSSs 3,006,003

Human promoterome



Predicting TFBSs in all proximal promotersPredicting TFBSs in all proximal promoters
Input:
• 203 mammalian regulatory motifs (weight matrices) representing 551 human TFs.

• 43,164 proximal promoter regions (-300,+100) with respect to each TSS.
• Alignments with orthologous regions from other mammals. 

• The phylogenetic tree relating the species:

IRF7 E2F REST GATA2/4

CATTCGCAGTGGCAAGGGACTGCCCTGGTCCCTGTGGAGC—GTCCCATTCGGTGACTTCCCACCAGCCCTTCCCCAGCGCCTCTGGAGGTCCAGACTGTCAGGTTGGAGCCTGGG
CATTCACAGTGGCAAGGGTCCGCCCTGGTCCCTGTGGAGG--GTCCCAGTCGGTGACTTCCCGCCAGCCCTTCCCCAGTGCCTCTGGAGGTC--GACTGTC-GGTTGGAGCCTGG
GAGGGGCGG---CTCGGGAGG---------CCTGCGGACC--GGGCGAG-CGGGGGCG-GCG----GGGCGGCGGGGGAGCCGGGCGGGGGCC------TGCGGTCGG-GCCTGG
GATTGGCCGCGGCCAAGGACCCC-----TCCCTGGGGAGC--GTCCGGGTCGGAGACT-CCCACTTGCCCTTCTCCAGCACCTCGTGAAGTCCGGACTGTACGGTTTG-GACTCG
TATCTACAACAGCAAG-GA--------GTC--TG-GAAGCAAGTCCAAGT-GATGGA-TACAGCCATCACTTACC--GGGCCTCTGCTGGTCGTGACTT----------------

Human

Rhesus macaque

Cow

Dog

Mouse



MotEvo AlgorithmMotEvo Algorithm

Scer AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--GTTGATATTC-CTTTGATATCG-----ACGACTA
Spar AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--ATTGATATTC-CTTTAGCTTTT----AAAGACTA
Smik GAAAAACGAAAAATTCATG-GAAAAGAGTCAACCGTC-GAAACATACATAA--ACCGATATTT-CTTTAGCTTTCGACAAAAATCTG
Sbay GAAAAATAAAAAGTGATTG-GAAAAGAGTCAGATCTCCAAAACATACATAATAACAGGTTTTTACATTAGCTTTT----GAAAACTA

lnF − ),|( ],[ TwSP lln−

Scer AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--GTTGATATTC-CTTTGATATCG-----ACGACTA
Spar AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--ATTGATATTC-CTTTAGCTTTT----AAAGACTA
Smik GAAAAACGAAAAATTCATG-GAAAAGAGTCAACCGTC-GAAACATACATAA--ACCGATATTT-CTTTAGCTTTCGACAAAAATCTG
Sbay GAAAAATAAAAAGTGATTG-GAAAAGAGTCAGATCTCCAAAACATACATAATAACAGGTTTTTACATTAGCTTTT----GAAAACTA

1−nF ),|( TbSP n

Scer AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--GTTGATATTC-CTTTGATATCG-----ACGACTA
Spar AAAAAATGAAAAATTCATGAGAAAAGAGTCAGACATC-GAAACATACATAA--ATTGATATTC-CTTTAGCTTTT----AAAGACTA
Smik GAAAAACGAAAAATTCATG-GAAAAGAGTCAACCGTC-GAAACATACATAA--ACCGATATTT-CTTTAGCTTTCGACAAAAATCTG
Sbay GAAAAATAAAAAGTGATTG-GAAAAGAGTCAGATCTCCAAAACATACATAATAACAGGTTTTTACATTAGCTTTT----GAAAACTA

lnF − dwwPTwSP lln )(),|( ],[∫ −

MotEvo:

van Nimwegen, E. 

BMC Bioinf 8 Suppl 6, S4 (2007)

MONKEY:

Moses, A.M., Chiang, D.Y., Pollard, D.A., 
Iyer, V.N. & Eisen, M.B. 

Genome Biol 5, R98 (2004).



Transcription factor binding sites Transcription factor binding sites 
have strong positional preferenceshave strong positional preferences

relative to TSSrelative to TSS
TBP

NF-Y CAAT-box

YY1

NRF1

SP1
RREB1

E2F
Myb

Sox17

Foxq1
FOXI1



GenomeGenome--wide annotation of regulatory siteswide annotation of regulatory sites

Example: Predicted TFBSs in the proximal promoter of the SNAI3 TF.

http://www.swissregulon.unibas.ch

For each promoter p and motif m calculate the predicted number of functional sites

pmN



Linear models of promoter expressionLinear models of promoter expression

msm pmpsps ANcce ∑+++= ~noise

Expression of promoter 
p in sample s

Basal promoter 
expression

Number of functional 
sites in promoter p for 

motif m

Activity of motif m
in sample s
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Fitting activities, minimize:

Similar approach in yeast: 
Nguyen DH, and P. D'haeseleer 
Mol. Syst. Biol. (2006)
doi:10.1038/msb4100054 
Application to human:
Das, D., Nahle, Z. & Zhang, M.Q. 
Mol Syst Biol 2, 2006 0029 (2006).
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Significance of the motif:



Human tissue atlas and Human tissue atlas and 
cancer cell expression datacancer cell expression data

79 human tissues, Affymetrix micro-array

60 cancer cell lines, same Affymetrix micro-array

We associate probes with promoters and apply the same analysis to this data set.



In which samples is a given motif In which samples is a given motif 
most active? most active? 

Fetal liver

Liver

Kidney

A known liver-specific factor indeed shows highest activity in liver tissues.

ms

ms

A
A
δ

*

sample s 



Immune 
tissues

Testis
samples

leukemia

MYB is high in testis. It is also up-regulated in all NCI60 samples. 

MYB

In which samples is a given motif In which samples is a given motif 
most active? most active? 

ms

ms

A
A
δ

*

sample s 



Which motifs differentiateWhich motifs differentiate
related tissues?related tissues?

• We can focus in on a set of related tissues, e.g. muscle tissues, and determine which
TFs vary most in activity across these tissues.

*
msA

sample s 



Which motifs change Which motifs change 
in development of a tissue?in development of a tissue?

Fetal thyroid and thyroid



Which motifs differentiate Which motifs differentiate 
healthy from tumor tissues?healthy from tumor tissues?

Lung and lung tumors



Which motifs change activityWhich motifs change activity
under a perturbation?under a perturbation?

Monocytes before and after treatment with retinoic acid



Example ApplicationExample Application

Collaboration with Dirk Schubeler, FMI, Basel

epigenetic reprogramming during terminal 
neuronal differentiation of murine stem cells in vitro

Neuron-specific 
class III -tubulin

• Micro-array expression data at 4 time points (ESC, early NP, late NP, TN) in duplicate.
• Nimblegen human promoter chips. 
• chIP-chip for methylated DNA, Polymerase II, H3K4me, and H3K27me (3 time points).



Activities of the most significant motifsActivities of the most significant motifs



Prediction of regulated target promotersPrediction of regulated target promoters
• For each motif go through list of all promoters with predicted TFBSs
• Investigate the correlation between expression profile of the promoter and 
activity profile of the motif. 

0>pmN

Our final predictions of regulatory targets  of each motif obey
• The promoter has a predicted TFBS for the motif.
• The TFBS shows conservation and correct positioning w.r.t. TSS.
• The expression of the promoter significantly correlates with the activity profile of the motif.



Targets of the most significant motifs:Targets of the most significant motifs:
Association with Gene Ontology categoriesAssociation with Gene Ontology categories

DNA replication
cell cycle

cell cycle 
M phase

neurological system  process
cell communication
cell surface receptor  linked 
signal transduction 

nervous system  development
neurite morphogenesis 
generation of neurons 

cell-cell signaling
synaptic transmission
neurological system process

transmission of nerve impulse
synaptic transmission
neurological system process 

developmental process 
nervous system development DNA binding

gene expression
RNA processing
ribosome biogenesis 
and assembly



Predicted effects of expression of regulatory sitesPredicted effects of expression of regulatory sites

http://www.swissregulon.unibas.chGenome browser:

Example: Predicted TFBSs in the proximal promoter of the SNAI3 TF.

Z-values quantify correlation between motif activity and target expression.



SNPs predicted to contribute to SNPs predicted to contribute to 
expression variation in humansexpression variation in humans

• We intersect the predicted TFBSs genome-wide with SNPs.

• SNP-density in TFBSs is almost a factor 2 smaller than in flanking regions (in proximal promoter).

• The effect on WM-score of the SNPs in TFBSs is clearly lower than effects of random mutations.
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