technische universität dortmund

All optical control of electron spins in quantum dot ensembles

Manfred Bayer

Experimentelle Physik II

Technische Universität Dortmund

JST-DFG workshop, Aachen, 05.-07.03.2008

Acknowledgements

A. Greilich, S. Spatzek, I. Yugova, I. Akimov, D. Yakovlev, Technische Universität Dortmund, Germany

A. Shabaev and A. Efros

Naval Research Laboratory, Washington DC, USA

D. Reuter and A. Wieck *Ruhr-University of Bochum, Germany*

Acknowledgements

Bundesministerium für Bildung und Forschung

Research group: "Quantum Optics in Semiconductor Nanostructures"

Deutsche Forschungsgemeinschaft

Borussia Dortmund Fußball heißt das Spiel, Borussia seine Seele!

Quantum information processing

Potential of quantum information processing:

Increase of computational power Realization of new functionalities for communication Reduction of complexity

Demand:

Long living coherence

$$\alpha |0\rangle + \beta |1\rangle$$
 mit $\alpha, \beta = \text{const.}$

Prerequisite Availability of high quality quantum hardware: Quantum dots!

Qubit-candidates in QDs

2-level systems

Spin is efficiently protected by confinement

against efficient relaxation mechanisms in higher-dim. systems.

Attractivity of QD electron spin qu-bits

Single spin vs spin ensembles

Single spin

Pro: avoid inhomogeneities

Con: fragile weak spectroscopic signal Spin ensemble

Pro: robustness strong spectroscopic signal

Con: inhomogeneities

Outline

- 1. Introduction
- 2. Faraday rotation with time resolution
- 3. Generation of spin coherence
- 4. Mode-locking of spin coherence
- 5. Tailoring of mode-locking
- 6. Electron spin focussing by nuclei
- 7. Current work

Quantum dot samples

Self-assembled quantum dots

- 20 layers of InGaAs/GaAs QDs with density ~ 10¹⁰cm⁻² per layer
- n-doped 20nm below QD layer dopant density ~ dot density
- thermal annealing (T>900°C for 30s) to use Si-based detectors

Non-annealed QD geometry:

dome-shaped

- ~ 25 nm diameter
 - ~ 5 nm height

large oscillator strength!

Experiment

Spin relaxation

Precession about magnetic field

Electron g-factor tensor

Precession about magnetic field

Analysis of FR data

Long lasting spin coherence

Spin mode locking

Spin synchronization scheme

Spin mode locking

A. Greilich et al., Science 313, 341 (2006)

Transverse spin relaxation time

laser repetition period T_R varied by pulse-picker from 13.2 to 990 ns

four orders of magnitude longer than ensemble dephasing $T_2^*=0.4$ ns at B=6T!

Clocking of spin modes only first pump is on B=6TFR amplitude (arb. units) only second pump is on $T_{\rm D} = 1.8$ ns $T_{R} / T_{D} = 7$ -1000 0 1000 2000 3000 4000 time (ps) A. Greilich et al., Science 313, 341 (2006)

Clocking of spin modes

Clocking of spin modes

Spin mode locking

A. Greilich et al., Science 313, 341 (2006)

Negative delay FR amplitude

explanation for similar FR amplitudes before and after pump pulse arrival

$$\omega_e = \frac{2\pi N}{T_R} = g_e \mu_B (B + B_N) / \hbar$$

nuclei create magnetic field such that all electron spins in the ensemble contribute to mode-locking

A. Greilich et al., Science 317, 1896 (2007)

Electron-nuclei spin flip-flop

Ultralong memory

Do the long-living nuclear spins show up in the FR studies?

A. Greilich et al., Science 317, 1896 (2007)

Optically induced relaxation

FR amplitude constant over an hour time scale, when system is held in darkness!

Nuclear spin relaxation times

A. Greilich et al., Science 317, 1896 (2007)

Spin precession density

A. Greilich et al., Science 317, 1896 (2007)

background of unlocked dots is removed!

broad spin precession distribution is transferred to comb-like distribution!

important:g change of precession frequency of mocomparable to uencies mode locking spacing

Current work

- Optical spin rotation
- Ensemble single mode spin precession
 - ~million inhomogeneous electrons focussed on single precession mode
- Application to EIT, slow light?

Conclusions

Quantum effects will play a key role in the next generation of information technologies!

EXCITONS

coherence time: ~ns

manipulation time: ~ps

sufficient for

quantum communication!

ELECTRON SPINS

coherence time: ~µs (manipulation time: ~ps)

sufficient for simple processors!

Publications

- A. Greilich et al., Phys. Rev. Lett. 96, 227401 (2006)
- A. Greilich et al., Science 313, 341 (2006)
- R. Oulton et al., Phys. Rev. Lett. 98, 107401 (2007)
- I. Yugova et al., Phys. Rev. B 75, 195325 (2007)
- A. Greilich et al., Phys. Rev. B 75, 233301 (2007)
- A. Greilich et al., Science 317, 1896 (2007)
- Further submitted papers