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• MEMS
• In-situ TEM observation of nano tensile testing in MEMS
• fL-chamber for confining molecules from diffusion 

– Single molecular analysis of F1-ATPase
– Microheater for temperature control in ms

• Direct molecular handling
– Nano-machined tweezers for direct handling of DNA molecule.
– Molecular sorter driven by Kinesin-MT bio molecular motor.

Content of talk
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• Technologically matured
– Surface micromachining, D-RIE, CMOS-MEMS, 

wafer level packaging 
• Commercial products are increasing rapidly

– automobile sensors, projection display, game 
controller sensors, opto-communication devices, 
cellular phone devices (resonator, SW, microphone)

• Future directions: 
– nano/bio integration, 
– large-area MEMS

Current MEMS status



Bridging nano and micro worlds by combining 
bottom-up & top-down technology
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In-situ TEM observation of 
tensile testing of Si nano wire



Simultaneous TEM observation and current 
measurement during tensile testing
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In-site TEM observation of tensile testing of nano wire

VB=1 V



Au-Au nano contact formation
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Au-Au nano contact breakage
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Current vs contact shape

Actuation voltage was maintained at 125.3 V. The restoring 
force of the tip support broke the gold contact.



DNA handling by MEMS tweezers

M. Kumemura, H. Sakaki, C. Yamahata, 
D. Collard, H. Fujita
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Mechanical & Electrical characterization of DNA bundles

Christophe Yamahata   • July 6, 2006
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Initial gap:  20 µm
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Resolution: 5 nm

Bundle of DNA
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Tweezers approaching droplet containing 
DNA to capture them 

DNA solution

Nano
gripper

Captured DNA molecules



Mechanical characterization

X ∝ V 2 / k

X ∝ V 2 / (k + k’)
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◎Mechanical characterization of DNA bundles
Resonant characteristics before/after capturing DNA
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Measurement of conductivity vs. elongation

（DNAの伸び率）

Linear decrease of conductivity R = φ*
L
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◎Electrical characterization of DNA bundles



Current flow through a DNA bundle
Exponential decrease of the current with decreasing humidity. 
Data extracted from previous measurements (5V step) after 60 sec. 
(rh was decreased from 75% to 45% in 6 hours)

Laboratory  meeting   • C. Yamahata  &   D. Collard    • January 18th 2007



DNA tweezers

Prospected single molecular 
characterization of DNA by nano tweezers

５μｍ

100μｍ

Separation and retrieval 
of a single DNA molecule

Electrical measurement

Stress vs. strain measurement

Visualization of DNA 
protein binding by AFM



Single molecular separation and trapping

＋
Micro separation

channels

Wide channel

Trapped single DNA



Single molecular trapping sequence

M/ Kumemura, et al. ChemPhysChem (2007)
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Capturing a single microtubule

Coating tweezers tips with PLL A single MT bridging over a gap was 
captured by tweezers

PLL solution

MT solution

①
microstructure
②

Nano tweezers

microtubule
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structures

Capturing a single microtubule
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Capturing a single microtubule
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Capturing a single microtubule
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20μ
m

The microtubule can be placed on PLL 
coated glass substrate.

Captured single microtubule by florescent image



Visualization of Bio Motor Molecule and 
Single Molecular Characterization of 

its Chemical Activity

in collaboration with 
Prof. Hiroyuki Noji (Osaka-U),

Prof. Shoji Takeuchi (IIS/U-Tokyo) & 
Dr. Yannick Rondelez* (LIMMS/CNRS-IIS)



Single molecule/cell analysis
• Advantages:

– Time course measurement
– Distribution analysis (average + dispersion)
– Fast screening
– Individual correlation between parameters

• Challenging requirements:
– Extreme high sensitivity
– Many measurement points
– Very fast measurement and control equipments
– Visualization

• MEMS can solve most problems.
– High sensitivity, parallel processing, high speed, 

imaging in liquid



100 nm

fL chamber F1 ATPase

６μmimobilization of 
F1 ATPase

PDMS fL chambers

F1 ATPase in fL chamber
in collaboration with Prof. H. Noji & S. Takeuchi

５μm

glass



ATP synthesis by mechanical 
rotation of F1-ATPase



Magnetic force drove F1-motor

Magnetic bead



2007.7.15

Single molecular measurement of ATP synthesis

Yannick Rondelez, et al.
Nature, 2005



Integration of microheater for 
characterizing protein denaturization 

by temperature control in ms

Hideyuki F. Arata, Frederic Gillot, and Hiroyuki Fujita



Micro heater with thermal sensor 
for quick temperature control
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H. F. Arata, et al.  presented at Micro-TAS 2007



Simulation of spatial distribution and 
temporal change of temperature

Spatial temperature distribution at 20 
ms after heater onset. 

Transient temperature change at 
bottom-left corner (red) and top-right 
corner (right) of a microchamber. When 
the former reaches 373K, the delay for 
the latter to reach the same temperature 
was estimated to be ~0.6 ms.
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GFP characterization
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Time course of fluorescent intensity of a micro container (green) with that 
of background (black). The intensity decreased to the value of 
background noise by sudden temperature rise given by the micro heater.

3 µm

H. F. Arata, et al.  presented at Micro-TAS 2007

Fluorescent view 
of GFP contained 
microchambers. 



• MEMS
• In-situ TEM observation of nano tensile testing in MEMS
• fL-chamber for confining molecules from diffusion 

– Single molecular analysis of F1-ATPase
– Microheater for temperature control in ms

• Direct molecular handling
– Molecular sorter driven by Kinesin-MT bio molecular motor.
– Nano-machined tweezers for direct handling of DNA molecule.

Content of talk



Intra-cellular conveyor driven by bio motors

schematic of cell inner structure

Ryuji Yokokawa, M.C. Tarhan, Hiroyuki Fujita



Issues to build nano conveyer

• Alignment of rail molecules
• Selective conveyance of targets
• Speed control

• Analogous to Shinkansen in Japan
– Construct rail roads
– Only allow ticked passengers to take trains
– Stop at proper stations



Schematic of gliding assay
Microtubules are carried by immobilized kinesin on glass. The minus 
end towards which microtubule is transported is more easily removed 
by fluidic flow than the other end; this is utilized to align microtubules.



Unidirectional transportation (process)
Ryuji Yokokawa, et al. Nano Letter (2004)



Unidirectional transportation (result)
Ryuji Yokokawa, et al. Nano Letter (2004)

90-97 % of beads moved
toward the same direction.



Transportation of target molecules
M. C. Tarhan, et al.  IEEE MEMS-2006 

a) Aligned microtubules are immobilized in the main channel. Beads 
are introduced from the sub-channel and attach to microtubules 
only at the intersection of both channels. 

b) Target molecules are introduced from sub-channel and are 
captured by beads. After washing, ATP introduction to main 
channel starts the transportation of beads with target molecules.

with microtubules



Selective attachment by avidin/biotin pair
M. C. Tarhan, et al.  IEEE MEMS-2006 

We have added another pair (Protein-A and its antibody).
Each type of molecules are conveyed on its corresponding beads.



Selective transportation of target molecules
M. C. Tarhan, et al.   presented at IEEE MEMS-2007 

antibody

biotin



•.Selective retrieval of molecules by molecular 
recognition and direct transportation by bio 

molecular motors was achieved. 
M. C. Tarhan, et al. IEEE MEMS-07



Conclusion
• Progress in MEMS and microfluidic devices has 

enabled advanced single biomolecular analysis.
• MEMS enabled advantages:

– confinement of molecules in fL-chamber
– Temperature control in milliseconds 
– Reconstruction of cellular parts
– Direct handling of bio molecules (down to single 

molecular level)
• MEMS characterization tools for nano/bio 

technology are promising.
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