2008.3.5-7 JST-DGF Nano Electronics Seminor at Achen

National Institute for Material Science

Landscape of materials design for future nano electronics And high-throughput materials exploration

Toyohiro Chikyow Advanced Electric Materials Center, National Institute for Materials Science

T.Nagata¹, N.Umezawa¹, M.Yoshitake¹, National Institute for Materials Science (NIMS)

K.Ohmori,³, T.Yamada³, *Waseda University*

H. Watanabe⁴, Osaka University,

K.Shiraiishi ⁵ ⁵Tsukuba University,

H. Koinuma^{1, 2} Japan Science and Technology Agency (JST),

Contents

1)New Materials and High Throughput Materials Exploration

2)Example 1: Gate oxide research 3)Example 2 :Metal gate research 4)Materials informatics 5)Summary New materials exploration by combinatorial methodology

More-Than-Moore Aiming at ultra small, super power saving, high efficiency multi functional device

Nano Electronics

Beyond CMOS

new log cnew memory Sontonosquanum

system

Ultimate CNOS

(nanowire, nanosheet)

Silicon technology

high-k-metal gate, Low-K

Lithography

Optical device, sensor organic

3D CMOS(Fin,SGT)

Nano characterization

More-Moore

New channel CNOS (Ge, III-V materials)

Nanotechnology

Development of ultra small, super power saving, high efficiency multi function by integration with Si device technology and nano technology

Research Trend in Si nano device

High speed operation. High denisty packing, multi -function device

Si,Al, SiO2 have been the major materials

Prof.Endo Tohoku Univ.

New Materials in Future ULSI

National Institute for Material Science

1) Collaboration 2) HT Experimentation

High-Throughput synthesis: imitation to innovation

Combinatorial Chemistry

Former combi system for inorganic materials

Innovative thin film technology

"<u>Combinatorial solid-state chemistry of inorganic materials</u>" Hideomi Koinuma and Ichiro Takeuchi, Nature Materials 3, 429 - 438 (2004)

b

1st generation Natural composition spread (1965)

2nd generation Spatially addressable library (1994)

3rd generation Layer-by-layer controlled array (1998)

What is combinatorial materials exploration?

Ambient light

UV irradiation

Discovery of new fluorescent materials

Fig. 2. (A) Photograph of the as-deposited quaternary library under ambient light. The diversity of colors in the different sites stems from variations in film thicknesses and the optical indices of refraction. (B) Luminescent photograph of the processed guaternary library under irradiation from a multiband emission UV lamp at short wavelength

Jingsong Wang et al Science 1998 March 13; 279: 1712-1714

Combinatorial automatic ternary and binary Composition spread synthesis system with Moving Mask System

Combinatorial Materials Exploration and Technology

Schematics of binary composition spread film

Concept of ternary materials combinatorial synthesis

Combinatorial deposition systems (@NIMS)

lon sputtering (metal gate materials)

Pulsed laser deposition (oxides, high-k films)

New materials discovery loop

Requirement

1) Higher dielectric constant 2)Amorphous structure

Defect density in Oxide (1) Ionicity : Y2O3< HfO2、MgO< TiO2, Al2O3 < ZnO<SiO2 (2) Valency : Y:3+, Hf:4+, Al:3+ Zn :2+, :simple ; Ti 3+, 4+ : mixed

Sun, Zachariasen Glass empirical rule

Combinatorial X-ray Diffraction System

HfO₂-Y₂O₃-Al₂O₃ system

(1) Dielectric constant mapping

$\begin{array}{c} Y_2O_3 & Al_2O_3 \\ \hline T_{sub} = 300^{\circ}\text{C}, \text{ laser power} = 3\text{J/cm}^2, \\ P_{O2} = 1e^{-6}\text{Torr, post-annealed at } 700^{\circ}\text{C} \end{array}$

HfO₂

Micro Structure Characterization for Combinatorial Samples

Micro Sampling Method

Hitachi FB-2000 +Micro sampling Unit

JEOL 4000EX (NIMS) H-9000NAR (T.I.T)

Characterizations of the combinatorial specimens

Dielectric Mapping by C-V, I-V

Interface structure mapping by TEM

Example 2 : Metal Gate

Requirement

Work function tuning
Interface control
Amorphous structure

Challenge of metal gate issues in *hp32-22nm node National Institute for Material Science*

Poly metal gate

- 1) interface roughness
- 2) Work function fractuation
- 3) Edge roughness

Metal glass gate

Work functions of various metals

(from Dr.Takagi Data)

Thermal reaction with HfO2

Work Function variation with compositon spread film of Pt-W

High-k Nett 次世代ゲート絶縁膜 研究ネットワーク

Experimental

<u>Comparison of CV curves from HfO₂ films</u> <u>under different annealing conditions</u>

> Relative dielectric constant: $\varepsilon = 18.0$.

Changes in flatband voltage

FGA: 450°C, 30 min OGA: 300°C, 30 min

> The higher WF is, the larger the V_{fb} value after OGA becomes.

- The shift can be reversed by an additional second FGA.
- This observed phenomena is general and mainly depends on work function.

One interface affects another interface

Cross-section TEM (HfO₂, after FGA)

- (1) 6-nm-thick HfO₂ + 1-nm-thick interfacial SiO₂ layer
- (2) Crystallized
- (3) Grain size > film thickness
- (4) Bright portion (reaction layer?) at the metal/high-k interface.

Amorphous and phase separation

From K.Ohmori et at from IEDM 2007

Archtecture of the materials informatiocs

National Institute for Material Science

4) domestic and international data sharing on web bases

Basic structure in Nano Electronics

National Institute for Material Science

1) Meta/Oxide Interface

Nano CMOS Spintronics (MIM) Ohmic contact (GaN ,ZnO)

2) Oxide/ Semiconductor Interface

Nano CMOS Hetero Epitaxy on Si 3) Metal /Oxide/ Semiconductor nano scale Interface

> Fermi level Pining Solar Cells

Hints from Photo catalysis

Informatics Network with NIMS

Material Informatics and its standardisation

High throughput nano materials exploration in nano electronics

1) Accelerating the nano materials exploration.

2) Systematic materials data can be used for other research.

3) Materials informatics which is shared with researchers or community can provide a lot of seeds for future innovation.