Electrical control of magnetism in semiconductors

F. Matsukura^{1,2}, D. Chiba^{2,1}, Y. Nishitani¹, M. Endo¹, and H. Ohno^{1,2}

¹Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University ²Semiconductor Spintronics Project, ERATO-JST

Outline

Introduction
 (field effect transistor with a magnetic semiconductor channel)

- Thickness dependence
- Mn composition dependence
- Summary

Discussion with M. Sawicki and T. Dietl (Polish Academy of Sciences)

Semiconductor Spin-electronics (Spintronics)

Spin-related phenomena in semiconductors \rightarrow an additional degree of freedom (spin + charge \rightarrow spintronics)

In order to enhance spin-related phenomena in semiconductors - alloy system with host semiconductor and guest magnetic ion (diluted magnetic semiconductors; DMSs) ⇒ Multifunctional materials

III-V Based Magnetic Semiconductors

 Combine present day electronic device materials with magnetism Low solubility of magnetic elements overcome by low-temperature molecular beam epitaxy (LT-MBE) vacuum chamber substrate substrate holder manipulator Mn thermocouple Ga GaAs substrate e-gun scree shutte effusion As Sb cell LN₂ cryo-panel

New materials can be synthesized under non-equilibrium growth condition

III-V Based Magnetic Semiconductors

- Combine present day electronic device materials with magnetism
- Low solubility of magnetic elements overcome by low-temperature molecular beam epitaxy (LT-MBE)

First III-V Based Magnetic Semiconductor

(In,Mn)As: H. Munekata *et al.*, Phys. Rev. Lett. **63**, 1849 (1989).

Ferromagnetism

(In,Mn)As: H. Ohno *et al.*, Phys Rev. Lett. **68**, 2664 (1992).

(Ga,Mn)As: H. Ohno *et al.*, Appl. Phys. Lett. **69**, 363 (1996).

Mn acts simultaneously as an acceptor and as a magnetic spin

p-d Zener Model

Interaction (p-d exchange interaction) between holes and Mn spins induces the spin-splitting of valence band

Energy gain by repopulation of holes between spin subbands stabilizes ferromagnetism

Curie temperature
$$T_{c} = \frac{xN_{0}S(S+1)A_{F}\rho_{S}(E_{F})\beta^{2}}{12k_{B}}$$

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science **287**, 1019 (2000). T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B **63**, 195205 (2001).

Comparison of Experimental and Calculated T_{c}

larger $T_{\rm C}$ for larger p quantitative agreement between experiment and calculation

exp.: (Ga,Mn)As:T. Omiya *et al.*, Physica E **7**, 976 (2000). (In,Mn)As: D. Chiba *et al.*, J. Supercond. and Novel Mag.16, 179 (2003). (Zn,Mn)Te: D. Ferrand *et al.*, Phys. Rev. B **63**, 085201 (2001).

Control of magnetism of ferromagnetic semiconductors by external means

Control of magnetism of ferromagnetic semiconductors by external means

isothermal control of magnetism H. Ohno *et al.*, Nature **408**, 944 (2000).

Previous result on FET with (Ga,Mn)As channel

FET device with Hall-bar shape

D. Chiba et al., Appl Phys Lett 89, 162505 (2006).

This work

 FETs with (Ga,Mn)As channel and gate insulator (Al₂O₃ or HfO₂) deposited by atomic layer deposition (ALD)

- 2. $T_{\rm C}$ & $\Delta T_{\rm C}$ of (Ga,Mn)As channels in FET
 - Channel thickness dependence
 - Mn composition dependence

Au/insulator/Au capacitors **Device structure** side view capacitor SI-GaAs sub. top view insulator Au Au **Measurement** lock-in **≩10 kΩ** V_{R} 100 mV 1 kHz ALD lock-in $V_{\rm C}$ Sample

M. J. Biercuk et al. Appl. Phys. Lett. 83, 2405 (2003).

A: area of capacitor, d: thickness of insulator

(Ga,Mn)As FETs

typical sample structure

FET fabrication

evaporation and lift-off

FET device with Hall-bar shape

(Ga,Mn)As FETs

E dependence of R_{sheet}

$$\Delta p(E) = \frac{\kappa \varepsilon_{0}}{et} E$$

$$R_{\text{sheet}}^{-1} = \mu et[p + \Delta p(E)]$$

$$= \mu(ept - \kappa \varepsilon_{0}E)$$

$$\mu = -\frac{\alpha}{\varepsilon_{0}\kappa}$$

$$p(E) = \frac{1}{\mu et} \frac{1}{R_{\text{sheet}}(E)}$$

channel thickness dependence

(Ga,Mn)As FETs with different channel thickness

Sample structure

 Δp for thinner layer \rightarrow larger $\Delta T_{\rm C}$

R_{sheet}-T

(Ga,Mn)As FETs with different channel thickness Typical results

(Ga,Mn)As FETs with different channel thickness Curie temperature

larger $T_{\rm C}$ and smaller $\Delta T_{\rm C}$ for thicker chnnael

(Ga,Mn)As FETs with different channel thickness Hole concentration & Curie temperature

FETs with thinner channel have larger $\Delta T_{\rm C}$ as well as Δp

Mn composition dependence

Growth of $Ga_{1-x}Mn_xAs$ with High x (~ 0.2)

Channel layer	5 nm	Ga _{0.8} Mn _{0.2} As
Buffer layer	4 nm	GaAs
	30 nm	Al _{0.75} Ga _{0.25} As
	420 nm	In _{0.15} Ga _{0.85} As
	30 nm	GaAs
Substrate	S.I. GaAs (001) sub.	

SQUID

AHE

MCD

0.4

0.2

D.Chiba *et al.*, Appl. Phys. Lett. **90**, 122503 (2007).S. Ohya *et al.*, Appl. Phys. Lett. **90**, 112503 (2007).

(Ga,Mn)As FETs with various Mn compositions

(Ga,Mn)As FETs with various Mn compositions

(Ga,Mn)As FETs with various Mn compositions

Summary of experimental results

 $\Delta T_{\rm C}/T_{\rm C} \sim 0.6 \Delta p/p$ is expected from the p-d Zener model

Other effects?

Summary

- FETs with a (Ga,Mn)As channel
- Control of $T_{\rm C}$ is indeed possible by gating
- Larger $\Delta p/p$ results in larger $\Delta T_{\rm C}/T_{\rm C}$; $\Delta T_{\rm C}/T_{\rm C} \sim 0.2\Delta p/p$
- Quantitative description ?

magnetization, channeling, distribution of Mn etc.

