# **Blue-LEDs innovating the world**

: a case of industry-academia collaboration and current activities at Nagoya University

March 10, 2015

#### Yoshimasa Goto

Academia Research & Industry-Academia-Government Collaboration Nagoya University

### Part 1

### **Nobel Prized blue LEDs**

As a case of industry-academia Collaboration

#### **Blue LED was invented at Nagoya University**

#### Nobel Prize in Physics 2014 awarded Prof. Akasaki, Amano and Nakamura for blue LEDs



Prof. Isamu Akasaki



Prof. Hiroshi Amano



 $\operatorname{\mathsf{Copyright}}\nolimits \mathbb C \ \mathbb R$  the Nobel Foundation

Copyright © Nobel Media AB 2014 Photo : Alexander Mahmoud **Blue LED was invented at Nagoya University** 

# Prof. Akasaki & Amano invented blue LEDs at Nagoya Univ. in collaboration with *Toyoda Gosei* corporation.

JST provided financial support to their research.



The world's first p-n junction GaN blue LED (1989)

#### Market of blue and white LEDs is expanding

#### Market exceeded \$8,400M in the world



Made from the Report by Sogogiken

Akasaki and Amano made two break-throughs

### 1. High quality GaN crystal

**Prof.** Akasaki and Amano succeeded in growing **high-quality GaN crystal**. Almost all people in the world did not believe it, before their success.

Based on the scientific theory of crystal, Prof. Akasaki foreseed

- -it is possible to grow high-quality GaN crystal
- -blue LEDs can be implemented only on GaN crystal

They invented a low-temperature buffer layer to grow GaN crystal on sapphire substrate in 1985 at Nagoya University





**Akasaki and Amano made two break-throughs 2** 

#### 2. p-n junction blue LED based on GaN

Even though they succeeded in growing GaN crystal, It was difficult to make p-n junction of GaN which was essential for LED. Prof. Akasaki and Amano invented the method to create p-type GaN and realized p-n junction of GaN, then practical blue LED was borne in 1989.



The world's first p-n junction GaN blue LED (1988)

### **Collaboration with Toyoda Gosei produced blue LEDs**

#### **Successful example of industry-academia collaboration**

- **1985** : Toyoda Gosei proposed a collaborative research with Akasaki group
- **1986-90** : collaborative research on crystal growth
- **1987-90 : JST funded the project of blue LED production technology**
- **1989** : world's first p-n junction GaN blue LED
- **1991** : JST authorized succeed in development of blue LED
- **1995** : start mass production of blue LED



Experimental devise for GaN crystal growth in 1987



Meeting between Toyoda Gosei and Prof. Akasaki in 1987

#### **Collaboration with Toyoda Gosei**



**Production line in Toyoda Gosei** 



**Toyoda Gosei people congratulated Nobel Prize** 

## Part 2

# Current Activities of industry-academia collaborations at Nagoya University

#### **Industry-academia collaboration at Nagoya University**



#### **Budget from industry**

**Cases of collaboration research** 

Industry-academia joint programs at Nagoya Univ.

# **Typical three programs**

- 1. Center Of Innovation program at Nagoya University
- 2. National Composite Center
- 3. Center for Embedded Computing Systems



# The Center of Innovation (COI) Program in Japan

The COI Program promotes challenging R&Ds to realize three visions for our ideal society. Twelve COI cites are supported by JST.

### **Three Visions of COI STREAM**

Vision 1 Secure sustainability as a country advanced in its aging population and declining birth rate

Smart Life Care, Ageless Society

Vision 2

Create a living environment with a high quality of life as a prosperous and reputable country

Smart Japan

Vision 3

Establish a sustainable society with vitality

Active Sustainability

\*1) Ministry of Education, Culture, Sports, Science and Technology\*2) Japan Science and Technology Agency

## **Goal of Nagoya COI : the "Mobility Society" for the Elderly**



Driver assisted system to prevent car accidents and relieve anxiety by understanding human factors of the elderly.



### **Implementation Structure of Nagoya COI**

**Project Leader** : K. Esaki (Toyota Motor) **Research Leader** : K. Onogi (Nagoya University)

Core Institution :Nagoya University

**Participating Companies:** 

Asahi Glass, DENSO, Toshiba, Toyota Motor, Toyota Central R&D Labs, Panasonic, Fujitsu

University and other Institutions:

**National Graduate Institute for Policy Studies, Tokyo Institute of Technology**, **Tokyo University of the Arts, Tokyo University of Agriculture and Technology** Aichi Prefectural University, Aichi Prefecture, Toyota City, National Institute of Advanced Industrial Science and Technology, **Institute of Physical and Chemical Research** 



National Innovation Complex

## **NCC :National Composite Center**

NCC is an industry-government-academia cooperative base of composite material research, especially carbon fiber reinforced plastic

NCC includes two research projects



Automobile Project

:developing CFRP structural material to reduce automobile weight

Aircraft/windmill Project : developing CFRP structural material for aircraft and windmills



#### **Challenge to reduce automobile weight with CFRPT**

goals of automobile project are
-automobile weight reduction
-low cost LFT-D system

#### Large-sized LFT-D forming system

Thermoplastic resin pellet



### **NCC provides large scale facilities**

#### **Facilities for automobile project**



Large high-speed oil hydraulic press equipment Power output 3,500 ton



Large continuous heating equipment



Biaxial extrusion for LFT-D

# **NCC :National Composite Center**

#### **Facilities for aircraft project**

#### Lighting resistance/ fire and flame resistance equipment



Maximum current of lightning resistance evaluation equipment: 200kA

Lightning resistance evaluation equipment (B/C generator)

Lightning resistance evaluation equipment (A generator)) Lightning resistance evaluation equipment (E generator) **NCES :Center for Embedded Computing Systems** 

NCES focused especially on Automotive application

- large-scale joint projects with car manufactures and car component suppliers
- consortium-type joint projects with industries

**Scope of NCES** 

- aiming at practical use in industry
- development of prototype system/software
- education and human resource development

# **Industrialized example of NCES's outcome**

### Platform embedded in consumer electronics



**EPSON** :Printer





Softbank :Mobile phone



**Ricoh : Printer** 



**Brother: Printer** 



**Roland : Audio Equipment** 

# **Industrialized example of NCES's outcome**

# Platform embedded in industrial products





Suzuki :Kizashi



Nissan :Skyline hybrid



Konica-Minolta :Spectrophotometers



Jaxa : ASTRO-H satellite





: Welding machine

# Thank you for your kind attention