

Hypervisor-Based Systems for Malware Detection and Prevention

Yoshihiro Oyama (大山 恵弘) The University of Electro-Communications (電気通信大学), Tokyo, Japan

This Talk

- I introduce two hypervisor-based security systems developed in our laboratory
 - HyperSlow: Extremely slowing malware execution by controlling the speed of virtual time
 - BVMD: Detecting malware signatures in a thin hypervisor

HYPERSLOW: EXTREMELY SLOWING MALWARE EXECUTION BY CONTROLLING THE SPEED OF VIRTUAL TIME

Background

- IaaS (Infrastructure as a Service)

 - IaaS provider lends VMs to customers

Malware Infection

- One guest OS is infected with malware that consumes resource company A company B
 - Wastes CPU, memory, ...
 - May have bad effect on other guest OSes

- Much literature showed that some malware could be detected from the VMM layer
 - VMwatcher [Jiang et al. '10], Lares [Brian et al. '08], Lycosid [Jones et al. '08]

Problem

- VMM administrator cannot modify the data managed by the guest OS
 - Ethically: Customer possesses the guest OS
 - Technically: Kind and version of the guest OS is unknown --- Windows? Linux? What version?
- Unfortunately, existing countermeasures are limited to coarse-grain ones
 - Ex.1: Stop whole VM
 - Ex.2: Drop all network packets from/to the VM
 - They affect even good processes running in the guest OS!

Goal

- Develop a VMM-based method for deactivating malware
 - Pinpointing the malware process
 - Mostly guest-OS-independent
 - Specifically, the method slows a malware process significantly
- Implement a system based on the method, HyperSlow, and demonstrate the effectiveness

HyperSlow

- Increases the speed of virtual time only while a malware process is running
 - It changes the rate of virtual timer interrupts and system time (elapsed time from boot)
- Is not a malware detection system, but a prevention system
 - It must cooperate with other detectors
- Xen-based

Process Scheduling Basics

- OS kernels (incl. Linux and Windows) use timer interrupts and/or system time for process scheduling
- Linux case:
 - When kernel receives a timer interrupt, it calculates the time consumed by the current process
 - Consumed time is calculated using system time
 - System time is calculated from hardware clock such as TSC
 - If the process has consumed all of the assigned time slice, it is preempted

Virtual Timer Interrupts in Xen

- Xen periodically injects virtual timer interrupts to virtual CPUs
 - Based on them, guest OS schedules processes and performs timekeeping

Basic Idea

- HyperSlow extremely shortens the interval between virtual timer interrupts, only while a malware process is scheduled
 - Promotes context switch by having guest OS kernel misunderstand the elapsed time
 - Uses CR3 register as a pseudo PID [Jones et al. '06]

BVMD: DETECTING MALWARE SIGNATURES IN A THIN HYPERVISOR

Background

- Anti-malware software is effective to detect and/or prevent attacks of malware
- But, the anti-malware approach has several problems
 - Malware can deactivate anti-malware operations if it compromises the OS kernel
 - Some users may uninstall or turn off antimalware
 - Intentionally or due to operation error

Our Approach

- Running anti-malware under OS (in hypervisor layer)
 - Administrator installs a hypervisor and guest OS in the machine of each member
 - Member receives the root privilege of the guest OS
 - Administrator keeps the admin privilege of the hypervisor

BVMD: the Proposed System

- A thin hypervisor provides malware detection facility
 - Use BitVisor [Shinagawa et al., VEE09], a parapass-through hypervisor
 - Detect malware signatures in I/O data transferred between guest OS and devices
- Advantage
 - Malware detection does not depend on guest OS
 - Windows, Linux, ...
 - Malware is still detected if the guest OS is compromised
 - User of guest OS (even an administrator) cannot deactivate antimalware
 - Modification of guest OS or execution of special daemon is not needed

BitVisor

- Parapass-through (most accesses pass through, minimum accesses are mediated)
- Small TCB (only 20K+ lines of code as of 2009)

BVMD

- Detects malware signatures appearing in the I/O data of the guest OS
 - By intercepting I/O operations
- Contains a database of malware
 - Reuses the malware signature of free anti-malware software ClamAV
 - Signatures are embedded in the source code of BVMD
- Performs fast string matching using the Aho-Corasick algorithm

Structure

Conclusion

- We proposed a malware deactivation method
 - Mostly OS-independent
 - Because it changes only the behavior of virtual hardware
 - Process granularity
 - It cannot completely stop malware, but will be useful for the first mild countermeasure in IaaS context
- We proposed BVMD, a extension to BitVisor that can detect malware signature in a hypervisor layer
 - Malware detection in a host-OS-less hypervisor
 - We confirmed that BVMD could detect most of Windows/Linux malware in the wild we collected