Cryptographic Approach to Enhance the Security Against Recent Threats

Atsuko Miyaji JAIST

Thank you very much for giving an opportunity to talk. Hope this opportunity becomes the first step of good collaboration between Taiwan and Japan researchers.

Outline

This talk

Cryptographic Approach to Enhance the Security Against Recent Real Threats.

- 1. Information Security for Cloud Computing
- Public key cryptosystems

 Elliptic Curve Cryptosystems (ECC)
 Dominant factor of ECC, security & efficiency
- 3. Scalar Multiplication
- 4. Side Channel Attack, real recent threats
- 5. Approach to Achieve a Secure and Efficient cryptosystems (our new results)
- 6. Conclusion

Information Security for Cloud Computing

Customers are both excited and nervous at the prospects of Cloud Computing.

Why?: Customers are also very concerned about the risks of Cloud Computing if not properly secured.

Cloud Security Alliance, Top Threats to Cloud Computing V1.0

How to reduce the risk?

Confidentiality: Protect a data from an outsider. Integrity: Guarantee a data consistency. Access control: Control data for users without right.

Information security

Encryption, Signature (Authentication)

Public Key Cryptosystems

In this talk, we focus on public key cryptosystems.

1. Information Security for Cloud Computing

- Public key cryptosystems

 Elliptic Curve Cryptosystems (ECC)
 Dominant factor of ECC, security & efficiency
 Scalar Multiplication
 Side Channel Attack, real recent threats
 Approach to Achieve a Secure and Efficient
- cryptosystems (our new results)
- 6. Conclusion

Principle of Public Key Cryptosystems

Security Comparison between IF, DLP, and ECDLP

 •DLP&IF: a sub-exponential time faster than exhaustive search O(exp{(loglogp)^{2/3}(log p)^{1/3}})
 •ECDLP: a square-root time (exhaustive search), O(p^{1/2})
 → ECDLP is more efficient than DLP/IF. (more and more)

Key size for IF, DLP, ECDLP to achieve a security level.

What is Elliptic Curve Cryptosystems -Elliptic Curve Discrete Logarithm Problem-

A non-degenerate cubic curve E: $y^2 = x^3 + ax + b$ (a, $b \in F_p(p>3)$, $4a^3+27b^2 \neq 0$)

Easily-executed addition is defined. \rightarrow E is a group. $\infty = (\infty, \infty)$ is a zero.

$$A + B = (x_3, y_3) \quad (A \neq B)$$

$$x_3 = ((y_2 - y_1)/(x_2 - x_1))^2 - x_1 - x_2$$

$$y_3 = (y_2 - y_1)(x_2 - x_1)(x_1 - x_3) - y_1$$

Finite abelian group.

$$E(F_p), F_p \text{-rational points,} \\ = \{(x,y) \in F_p \times F_p \mid y^2 = x^3 + ax + b \} \cup \{\infty\}$$

ECDLP

P For given G, $Y \in E(F_p)$, find x such that $Y = G + \cdots + G = xG$

ECC (Elliptic Curve Cryptosystems) is based on ECDLP.

NSC-JST workshop / 2012.11 28

Dominant Computation of ECC

 Dominant security/computation of ECC is a scalar multiplication of kP for a secret k and given P.

- Outline 3
 - 1. Information Security for Cloud Computing
 - 2. Public key cryptosystems
 - 3. Elliptic Curve Cryptosystems
 - 4. Scalar Multiplication
 - 5. Side Channel Attack
 - 6. Approach to Achieve a Secure and Efficient cryptosystems
 - 7. Conclusion

Scalar Multiplications -how to efficient & secure-

ECC consists of scalar multiplication kP.

Performance of ECC: depends on (memory, comp) of kP

 \rightarrow efficient scalar multiplication is needed!

Security of ECC: also depends on a secrecy of k in kP

<Theoretically> Solve k from kP means "solve ECDLP".

<Practically> (side channel attack) Solve k during execution of kP by side channel information.

 \rightarrow secure scalar multiplication is needed!

@atsuko miyaji

Layered Model for Scalar Multiplication	Allenal Science Council 科学技術振興機構 Japan Science and Technology Agency
Addition-chainsBinary, Signed binary, window methodAddition formulaeDblAdd	# Dbl + # Add is different
Coordinates Affine (A) Jacobian (J)	#M+#I+#I is different.
Field arithmeticSquare (S)Multiplication (M)Inversion (I)	Computation cost $I \gg M > S$

All layers have different methods with different computational cost.
 → We investigate secure and efficient scalar multiplication.

the life that the state and state and the

- Outline 4
 - 1. Information Security for Cloud Computing
 - 2. Public key cryptosystems
 - 3. Elliptic Curve Cryptosystems
 - 4. Scalar Multiplication
 - 5. Side Channel Attack
 - 6. Approach to Achieve a Secure and Efficient cryptosystems
 - 7. Conclusion

Left-to-Right binary algorithm Input P, $k=(k_{n-1}, \dots, k_0)$, Output kP $R_0 = P, R_2 = P$ For i = n-2 to 0 $R_0 = 2R_0$ if $k_i = 1$ then $R_0 = R_0 + R_2$ Output R_0 Add only if $k_i=1$

Binary algorithm has branch instruction depends on secret-key bit k.

It is subject to side-channel attacks.

Side Channel Attack

Side channel attack

Obtain the secret of k by observing side channel info: Computing time, power consumption traces, etc.

SPA (Single Power Analysis):

Obtain the secret of k by observing the single power analysis.

 \rightarrow regular execution without branch for a condition of k.

Safe error attack :

Obtain the secret by inducing a fault during the execution of kP and checking whether the targeted instruction is fake.

 \rightarrow execution without dummy operation

Simple Power Analysis (SPA)

 $E, E(F_p) \ni P$

x, k: secret key

m

Use an instruction dependent of a secret k during kP \rightarrow Eliminate any branch instruction of kP.

c Binary algorithm ys algorithm

$$R_0 = P, R_2 = P$$

For i = n-2 to 0
$$R_0 = 2R_0$$

b = ck_i ; $R_b = R_b + R_2$ 2
Output R_0

If power consumption is measured, then branch instruction reveals the corresponding secret-key bit.

 $R = kP = (R_x, R_y)$ s = (m + x R_x)/k

Signature generation

Safe Error Attach (SEA)

double-and-add-always algorithm secure against SPA. $R_0 = P, R_2 = P$

For i = n-2 to 0 $R_0 = 2R_0$ $b = ck_i; R_b = R_b + R_2$ Output R_0

- Outline 5
 - 1. Information Security for Cloud Computing
 - 2. Public key cryptosystems
 - 3. Elliptic Curve Cryptosystems
 - 4. Scalar Multiplication
 - 5. Side Channel Attack
 - 6. Approach to Achieve a Secure and Efficient cryptosystems
 - 7. Conclusion

Secure Scalar Multiplication

Secure scalar multiplication algorithm against SPA (Single Power Analysis) and safe error attack are: 1. regular execution without branch for a condition of k. 2. do not insert any dummy operation

$L \rightarrow R$ Montgomery Algorithm

 $R_{0} = O, R_{1} = P$ For i = n-2 to 0 $b = k_{i}; R_{1-b} = R_{1-b} + R_{b}$ $R_{b} = 2R_{b}$ Output R₀

R→L Joye's Algorithm

$$R_0 = O, R_1 = P$$

For i = 0 to n - 1 do
 $b = k_i$
 $R_{1-b} = 2R_{1-b} + R_b$
Output R_0

We have further improved those secure Montgomery & Joye's alg by introducing new formulae. <u>Reatsuko miyaji</u> NSC-JST workshop / 2012.11 28

Improvement of addition formulae

Operation	p	Cost(S=0.8M)		
Co-Z Add	6	5M + 25	6.6	
(X, Y)-only co-Z Add	5	4M + 25	5.6	15
Jacobian Add	7	11M + 5S	15	15
Our Conjugate co-Z Add	7	6M + 3S	8.4	$\supset -$
(X, Y)-only conjugate co-Z Add	6	5M + 3S	7.4	
Co-Z Dbl with update	6	1M + 5S	5	
(X, Y)-only co-Z Dbl	5	1M + 5S	5	
Jacobian Dbl	6	2M + 85	8.4	
Co-Z Tpl with update	6	6M + 7S	11.6	
(X, Y)-only co-Z Tpl	5	5M + 7S	10.6	
Jacobian Tpl	9	6M + 10S	14	
Our Co-Z Dbl-Add	8	9M + 75	14.6	
(X, Y)-only co-Z Dbl-Add	6	8M + 6S	12.8	
Co-Z conjugate-Add-Add	8	9M + 7S	14.6	
(X, Y)-only co-Z conjugate-Add-Add with update	6	8M + 6S	12.8	20/22

	Algorithm	Main op.	p	Comp cost/bit		
				(M,S)	(M)	
R	Basic Joye's double-add	DA	10	13M + 8S	19.4	759
L	Ours:Co-Z Joye's double-add	ZDAU	8	9M + 7S	14.6	75%

L	Basic Montgomery	DBL+ADD	8	12M + 135	22.4	
\downarrow	Ours: co-Z Montgomery	ZDAU	8	9M + 7S	14.6	65%
R	Ours:(X, Y)-only co-Z Montg	ZACAU'	6	8M + 6S	12.8	88%

Conclusion

- 1. We have investigated elliptic curve cryptosystems as the most attractive public key cryptosystems.
 - 1. A scalar multiplication is a dominant factor for both security and efficiency.
- 2. We have focused on Side Channel Attacks as recent threats and shown various attacks.
- 3. We have shown some secure ECC to avoid side channel attack.
- 4. Finally, we have presented our results that improve a secure scalar multiplication.