Deeply Programmable Network (DPN) and Advanced Network Virtualization

Aki Nakao
The University of Tokyo
2012/11/27

OpenFlow ∈ SDN

Flow Pattern Match

Actions

OpenFlow Controller

(OpenFlow API)

Fixed Control Plane Fixed Data Plane

Physical Ports

OpenFlow Switch

Although OpenFlow enables flexible control of flows, we want more:

- Complex packet processing / Non-IP protocols handling
- New classification rules based on more than 12 tuples
- Proprietary API definition / dynamic reprogramming of APIs
- Rapid prototyping of future network node...

For some of us, OpenFlow/API is at the right level of abstraction...

However...for some of us,

- We should be able to extend API for complex actions
- OpenFlow may be forcedly used in an inefficient manner, e.g.,
 - copying L7 bits to MAC for control based on those bits...
 - parsing tuples in a non-standard way to implement VXLAN etc.

Extending SDN Further?

- Control-Plane Programmability
 - Route Control
 - Access Control
 - Network Management
- Data-Plane Programmability
 - Packet Data Processing
 - Cache
 - Transcode
 - DPI
 - Handling New Protocols
 - IPvN (N>6)
 - New Layer2
 - Content Centric Network (CCN)
- Meta-Control-Plane Programmability
 - Defining new proprietary APIs

Target Scope of OpenFlow SDN

OpenFlow with external processors

Irrelevant with

OpenFlow
(+processors)

Out of scope of OpenFlow

Scope of
Deeply
Programmable
Network
(DPN)

Deeper Programmability

Deep Programmability for Network Edge

- "Tangible" small-form-factor (1U) VNode
- Deeply programmable, even at L2, yet high performance
- Fixed-mobile converged slicing

DPN as a super set of SDN

DPN (Deeply Programmable Network)

SDN

Programmability

for Control Plane

via a given API

Programmability

for Data Plane

Programmability

for defining an API

for C/D planes

Making fully programmable network nodes?

north bound c-plane API

c-plane API

Programmable Control Plane

Programmable Data Plane

Programmable Node

d-plane API (network function virtualization)

Challenges:

- Achieve both programmability and performance at the same time
- Instantly upgrade/downgrade switching logics
- Enable network virtualization (multiple logical slices)
- Make a slice fully programmable (data-plane, control-plane)

FLARE

SDN
Control Plane
Programmability

DPN
SDN + Data Plane
Programmability

Deeply Programmable Node

Network Virtualization

New Protocol Capability

FLARE Architecture

FLARE Switch Implementation

- Mini 1U / 1U / 2U Form Factor (only 200W)
- A combination of resource containers on many-core processor (fast path) +x86 processor (slow path)
- 4x10Gbps (20Gbps Non-blocking), 2x10G+8x1G Planned
- Up to 15 slow-path slivers can be instantiated
- Linux programmability at slow/fast-path slivers and packet slicer
- Parallel programming for high performance at fast-path
- OpenFlow switch logic and API can be programmed

The University of Tokyo Confidential

Control Plane Versioning

Change according to flows, time, etc

Programming Model

Multi-Threaded Modular Programming e.g., Click Software Modular Router

- Arbitrary switch logic(s) can be implemented in fast-path, slow-path and slicer sliver
- •Ready-made software modules (Ethernet, CRC, ARP, IPv4, IPv6, IPSec, GRE, NAT, many more...)

Ethernet Switch

10.0

5.0

2.5

pkt_size=1514B

15

OpenFlow Switch

How deep programmability do we want?

Several questions to ask:

- Control plane programmability only?
- Data plane too (cache, transcode, DPI)?
- Can we define a new L2 protocol?

A Case in Data Center Network

- Limitation in MAC address space
 - Conflict of MAC addresses in VM migration
- Limitation in VID (802.1Q) space
 - The number of tenants increases in laaS

Data Center Network depends heavily on L2 leading to solutions such as EUI-64 and VXLAN

Mac Address Extension

EUI-64 (64bit Extended Unique Identifier)

Extended MAC Switching

Inter-Cloud VM Migration With Extended MAC

Starbed(Hokuriku) UTokyo(Tokyo) Guest Guest Guest Guest VM VM VM VM Extended MAC1 Extended MAC2 Extended MAC1 Extended MAC2 WAN Migration FLARE **FLARE IP Datagram Extended DMAC Extended SMAC** Type

FLARE at ITPro EXPO 2012

Beyond OpenFlow/SDN

The University of Tokyo Confide

MPLS 2012 (with Cisco & Juniper)

Conclusion

- Programmability for Data-plane and (re)defining APIs for C/D planes is considered extension to Software Defined Network (SDN) and an important topic to explore
- Inter-cloud network may benefit from deep programmability for enabling in-network services and defining new protocols.